首页 > 最新文献

Bioresources最新文献

英文 中文
Crystallinity and chemical structure of Amazon wood species in a log yard after natural degradation 自然降解后原木堆场中亚马逊木种的结晶度和化学结构
IF 1.5 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Pub Date : 2023-12-18 DOI: 10.15376/biores.19.1.1136-1149
Juliane da Silva Sampaio, F. W. C. Andrade, V. Moutinho, Manoel Roberval Pimentel Santos, Jessica Sabrina da Silva Ferreira
The objective of this work was to evaluate whether the chemical composition of wood and its crystallinity can help in the analysis of degradation by fungi and insects in logs of Amazonian wood species stored in a stockyard. For this study, wood from five commercial species that had been stored in an open yard for six months was used. The scale of degradation by fungi and insects, the moisture content of the logs, the total extractive content, lignin, holocellulose and the crystallinity were evaluated. It was concluded that the position of the logs in the stacks, associated with the storage time, influenced the evaluated characteristics. It was also observed that X-ray diffraction has potential for analysis of the degradation by fungi and insects in logs of Amazonian species stored in the stockyard.
这项工作的目的是评估木材的化学成分及其结晶度是否有助于分析存放在堆场中的亚马逊木材物种原木的真菌和昆虫降解情况。在这项研究中,使用了在露天堆场存放六个月的五种商业木材。对真菌和昆虫的降解程度、原木的含水量、总萃取物含量、木质素、全纤维素和结晶度进行了评估。得出的结论是,原木在堆垛中的位置与贮存时间有关,会影响所评估的特性。研究还发现,X 射线衍射法有可能用于分析储存在堆场中的亚马逊树种原木在真菌和昆虫作用下的降解情况。
{"title":"Crystallinity and chemical structure of Amazon wood species in a log yard after natural degradation","authors":"Juliane da Silva Sampaio, F. W. C. Andrade, V. Moutinho, Manoel Roberval Pimentel Santos, Jessica Sabrina da Silva Ferreira","doi":"10.15376/biores.19.1.1136-1149","DOIUrl":"https://doi.org/10.15376/biores.19.1.1136-1149","url":null,"abstract":"The objective of this work was to evaluate whether the chemical composition of wood and its crystallinity can help in the analysis of degradation by fungi and insects in logs of Amazonian wood species stored in a stockyard. For this study, wood from five commercial species that had been stored in an open yard for six months was used. The scale of degradation by fungi and insects, the moisture content of the logs, the total extractive content, lignin, holocellulose and the crystallinity were evaluated. It was concluded that the position of the logs in the stacks, associated with the storage time, influenced the evaluated characteristics. It was also observed that X-ray diffraction has potential for analysis of the degradation by fungi and insects in logs of Amazonian species stored in the stockyard.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"6 6","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138995032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aquatic aerobic biodegradation of commonly flushed materials in aerobic wastewater treatment plant solids 好氧污水处理厂固体中常见冲洗物的水生好氧生物降解
IF 1.5 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Pub Date : 2023-12-18 DOI: 10.15376/biores.19.1.1150-1164
M. M. Smith, M. Zambrano, Mary A. Ankeny, J. Daystar, Steven Pires, J. Pawlak, R. Venditti
Microfibers and microplastics originating from wastewater treatment plant (WWTP) effluents are significant pollutants in freshwater sources and marine environments. This research investigated the biodegradation of cotton microfibers generated from bleached cotton jersey knit fabric and commercially available flushable wipes, polypropylene-based (PP) nonwoven wipes containing a cellulose component, and tissue paper. Biodegradation was tested in wastewater treatment plants (WWTP) solids, seawater, and lakewater according to the ISO 14852 and ASTM D6691 standard methods in an ECHO respirometer. Degradation experiments continued until a plateau in CO2 emissions was reached, and the final biodegradation extent was calculated relative to the theoretical CO2 produced based on elemental analysis. The results showed that the cotton and other cellulosic materials/components biodegrade to a great extent, as expected for all conditions, whereas the PP did not degrade. In general, for the cellulose polypropylene composite wipes, the cellulose biodegraded readily; the presence of the PP did not hinder the cellulose biodegradation.
源自污水处理厂(WWTP)废水的微纤维和微塑料是淡水水源和海洋环境中的重要污染物。这项研究调查了从漂白棉针织物和市售可冲洗湿巾、含有纤维素成分的聚丙烯基(PP)无纺布湿巾以及纸巾中产生的棉微纤维的生物降解情况。根据 ISO 14852 和 ASTM D6691 标准方法,在 ECHO 呼吸器中对废水处理厂(WWTP)固体、海水和湖水进行了生物降解测试。降解实验一直持续到二氧化碳排放量达到峰值,并根据元素分析计算出相对于理论二氧化碳产生量的最终生物降解程度。结果显示,棉花和其他纤维素材料/成分的生物降解程度很高,符合所有条件下的预期,而聚丙烯则没有降解。一般来说,纤维素聚丙烯复合抹布的纤维素很容易生物降解;聚丙烯的存在并不妨碍纤维素的生物降解。
{"title":"Aquatic aerobic biodegradation of commonly flushed materials in aerobic wastewater treatment plant solids","authors":"M. M. Smith, M. Zambrano, Mary A. Ankeny, J. Daystar, Steven Pires, J. Pawlak, R. Venditti","doi":"10.15376/biores.19.1.1150-1164","DOIUrl":"https://doi.org/10.15376/biores.19.1.1150-1164","url":null,"abstract":"Microfibers and microplastics originating from wastewater treatment plant (WWTP) effluents are significant pollutants in freshwater sources and marine environments. This research investigated the biodegradation of cotton microfibers generated from bleached cotton jersey knit fabric and commercially available flushable wipes, polypropylene-based (PP) nonwoven wipes containing a cellulose component, and tissue paper. Biodegradation was tested in wastewater treatment plants (WWTP) solids, seawater, and lakewater according to the ISO 14852 and ASTM D6691 standard methods in an ECHO respirometer. Degradation experiments continued until a plateau in CO2 emissions was reached, and the final biodegradation extent was calculated relative to the theoretical CO2 produced based on elemental analysis. The results showed that the cotton and other cellulosic materials/components biodegrade to a great extent, as expected for all conditions, whereas the PP did not degrade. In general, for the cellulose polypropylene composite wipes, the cellulose biodegraded readily; the presence of the PP did not hinder the cellulose biodegradation.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"12 8","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138995378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid-state fermentation for gossypol detoxification and nutritive enrichment of cottonseed cake: A scale-up of batch fermentation process 用于棉籽饼棉酚脱毒和营养富集的固态发酵:批量发酵工艺的放大
IF 1.5 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Pub Date : 2023-12-18 DOI: 10.15376/biores.19.1.1107-1118
V. Mageshwaran, Varsha Satankar, Surinder Paul
Gossypol, a toxic polyphenolic compound, limits the use of cottonseed cake (CSC) in animal feed. Different approaches have been employed to detoxify gossypol and improve the nutritive properties of feed. Microbial fermentation improves the nutritive quality of CSC by increasing lysine content and reducing free and bound gossypol. In this study, microbial fermentation was scaled up under batch conditions using a prototype device at the capacity of 40 kg per day. The mixed fungal culture C. tropicalis + S. cerevisiae was used for fermentation. An industrial trial was taken to ascertain the gossypol detoxification efficiency. The fermented CSC obtained under scale-up process had 60 to 80% and 40 to 60% reduction of free and bound gossypol, respectively, compared with raw CSC. The fermented CSC demonstrated an increase in crude protein (4 to 12%) and lysine (0.3 to 0.4%) and decrease in crude fibre (3 to 11%). The fermented CSC met the standards of US Food and Drug Administration in terms of its nutritional property. Thus, the simple method described in this study could be adopted for the production of detoxified CSC for use in the animal feed industry.
棉酚是一种有毒的多酚化合物,限制了棉籽饼(CSC)在动物饲料中的使用。人们采用了不同的方法来解毒棉酚并改善饲料的营养特性。微生物发酵可增加赖氨酸含量,减少游离和结合棉酚,从而改善棉籽饼的营养质量。在这项研究中,使用一个原型装置,在批量条件下扩大了微生物发酵的规模,发酵能力为每天 40 公斤。发酵使用的是 C. tropicalis + S. cerevisiae 混合真菌培养物。通过工业试验来确定棉酚的解毒效率。与未加工的 CSC 相比,发酵 CSC 的游离棉酚和结合棉酚分别减少了 60% 至 80% 和 40% 至 60%。发酵后的 CSC 粗蛋白(4%-12%)和赖氨酸(0.3%-0.4%)含量增加,粗纤维(3%-11%)含量减少。发酵后的 CSC 营养成分符合美国食品药品管理局的标准。因此,本研究中描述的简单方法可用于生产脱毒 CSC 供动物饲料行业使用。
{"title":"Solid-state fermentation for gossypol detoxification and nutritive enrichment of cottonseed cake: A scale-up of batch fermentation process","authors":"V. Mageshwaran, Varsha Satankar, Surinder Paul","doi":"10.15376/biores.19.1.1107-1118","DOIUrl":"https://doi.org/10.15376/biores.19.1.1107-1118","url":null,"abstract":"Gossypol, a toxic polyphenolic compound, limits the use of cottonseed cake (CSC) in animal feed. Different approaches have been employed to detoxify gossypol and improve the nutritive properties of feed. Microbial fermentation improves the nutritive quality of CSC by increasing lysine content and reducing free and bound gossypol. In this study, microbial fermentation was scaled up under batch conditions using a prototype device at the capacity of 40 kg per day. The mixed fungal culture C. tropicalis + S. cerevisiae was used for fermentation. An industrial trial was taken to ascertain the gossypol detoxification efficiency. The fermented CSC obtained under scale-up process had 60 to 80% and 40 to 60% reduction of free and bound gossypol, respectively, compared with raw CSC. The fermented CSC demonstrated an increase in crude protein (4 to 12%) and lysine (0.3 to 0.4%) and decrease in crude fibre (3 to 11%). The fermented CSC met the standards of US Food and Drug Administration in terms of its nutritional property. Thus, the simple method described in this study could be adopted for the production of detoxified CSC for use in the animal feed industry.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":" 11","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138963607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical and thermo-mechanical behaviors of snake grass fiber-reinforced epoxy composite 蛇草纤维增强环氧树脂复合材料的力学和热力学行为
IF 1.5 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Pub Date : 2023-12-18 DOI: 10.15376/biores.19.1.1119-1135
Parthasarathy Chandramohan, K. MAYANDI, Karthikeyan Subramanian, R. Nagarajan, Farid F. Muhammed, H. Al-Lohedan, Kumar Krishnan
Snake grass fiber was used as a supporting material in an epoxy matrix. The goal was to develop a lightweight structural material. To enhance the interfacial bonding between the snake grass (Sansevieria ehrenbergii) fiber and polymer matrices, the fiber underwent chemical treatment with NaOH. Samples were prepared with both neat and treated fibers mixed with epoxy at various volume percentages. The mechanical properties of snake grass fiber exhibited improvement with increasing fiber length and fixation, reaching optimal values at 20 mm length and 20% v/v fixation. Dynamic mechanical analysis (DMA) demonstrated superior energy absorption by the composite up to 140 °C, irrespective of repetition. Thermogravimetric analysis (TGA) indicated rapid degradation of untreated fiber with a residue level of 0.2%, while the snake grass composite (25% v/v) exhibited stable residue content at 11%. Microscopic evaluation using a scanning electron microscope provided insights into the morphology of the fiber surface.
蛇草纤维被用作环氧树脂基体中的支撑材料。目的是开发一种轻质结构材料。为了增强蛇草(Sansevieria ehrenbergii)纤维与聚合物基质之间的界面粘合力,用 NaOH 对蛇草纤维进行了化学处理。制备的样品中既有纯纤维,也有经过处理的纤维,并以不同的体积百分比与环氧树脂混合。蛇草纤维的机械性能随着纤维长度和固定度的增加而改善,在纤维长度为 20 毫米、固定度为 20% v/v 时达到最佳值。动态机械分析(DMA)表明,复合材料的能量吸收能力极强,最高可达 140 °C,与重复温度无关。热重分析(TGA)表明,未经处理的纤维降解迅速,残留物含量为 0.2%,而蛇草复合材料(25% v/v)的残留物含量稳定在 11%。使用扫描电子显微镜进行的显微评估有助于深入了解纤维表面的形态。
{"title":"Mechanical and thermo-mechanical behaviors of snake grass fiber-reinforced epoxy composite","authors":"Parthasarathy Chandramohan, K. MAYANDI, Karthikeyan Subramanian, R. Nagarajan, Farid F. Muhammed, H. Al-Lohedan, Kumar Krishnan","doi":"10.15376/biores.19.1.1119-1135","DOIUrl":"https://doi.org/10.15376/biores.19.1.1119-1135","url":null,"abstract":"Snake grass fiber was used as a supporting material in an epoxy matrix. The goal was to develop a lightweight structural material. To enhance the interfacial bonding between the snake grass (Sansevieria ehrenbergii) fiber and polymer matrices, the fiber underwent chemical treatment with NaOH. Samples were prepared with both neat and treated fibers mixed with epoxy at various volume percentages. The mechanical properties of snake grass fiber exhibited improvement with increasing fiber length and fixation, reaching optimal values at 20 mm length and 20% v/v fixation. Dynamic mechanical analysis (DMA) demonstrated superior energy absorption by the composite up to 140 °C, irrespective of repetition. Thermogravimetric analysis (TGA) indicated rapid degradation of untreated fiber with a residue level of 0.2%, while the snake grass composite (25% v/v) exhibited stable residue content at 11%. Microscopic evaluation using a scanning electron microscope provided insights into the morphology of the fiber surface.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"74 ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139174734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alkaline hydrogen peroxide delignification of three lignocellulosic biomass under atmospheric pressure 碱性过氧化氢在常压下对三种木质纤维素生物质进行脱木素处理
IF 1.5 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Pub Date : 2023-12-15 DOI: 10.15376/biores.19.1.998-1009
J. Mun, Sung Phil Mun
The study’s goal was to investigate the delignification characteristics using alkaline hydrogen peroxide (AHP) under atmospheric pressure, intending it as a pre-treatment method for transforming low-value lignocellulosic biomass into high-performance structural materials. The lignocellulosic biomass used in this study were Japanese cedar (Cryptomeria japonica), Hyun aspen (Populus alba x glandulosa), and bamboo (Phyllostachys pubescens), which are underutilized and low-value lignocellulosic biomass in Korea. The delignification conditions used were pH 11, liquor ratio 12.5, H2O2 (3 to 10%), temperature (25 to 100 °C), and time (1 to 24 h). Japanese cedar exhibited <30% delignification even under the most severe conditions. In contrast, Hyun aspen achieved more than double that level of delignification. However, reaching over 60% delignification was challenging. Bamboo was easily delignified, reaching approximately 80% delignification using similar conditions performed in Japanese cedar and Hyun aspen. These differences observed in AHP delignification among three species were likely to be primarily due to the structural differences and proportion of condensed units in lignin. Consequently, for Hyun aspen and bamboo, the AHP delignification process under atmospheric pressure was considered to be feasible as a pre-treatment method for high-performance structural materials.
这项研究的目的是研究在常压下使用碱性过氧化氢(AHP)进行脱木素的特性,并将其作为一种将低价值木质纤维素生物质转化为高性能结构材料的预处理方法。本研究中使用的木质纤维素生物质是日本杉(Cryptomeria japonica)、玄杨(Populus alba x glandulosa)和竹子(Phyllostachys pubescens),这些都是韩国未充分利用的低价值木质纤维素生物质。采用的木质素化条件为 pH 值 11、液比 12.5、H2O2(3 至 10%)、温度(25 至 100 °C)和时间(1 至 24 小时)。即使在最苛刻的条件下,日本雪松的木质素脱除率也小于 30%。相比之下,玄杨的木质素脱除率是日本杉的两倍多。然而,要达到 60% 以上的木质素分解率是一项挑战。竹子很容易木质素化,在日本杉和杨树的类似条件下,木质素化率可达到约 80%。在三种树种中观察到的 AHP 降解差异可能主要是由于木质素的结构差异和缩合单元比例造成的。因此,对于杨树和竹子而言,常压下的 AHP 木质素脱除工艺被认为是一种可行的高性能结构材料预处理方法。
{"title":"Alkaline hydrogen peroxide delignification of three lignocellulosic biomass under atmospheric pressure","authors":"J. Mun, Sung Phil Mun","doi":"10.15376/biores.19.1.998-1009","DOIUrl":"https://doi.org/10.15376/biores.19.1.998-1009","url":null,"abstract":"The study’s goal was to investigate the delignification characteristics using alkaline hydrogen peroxide (AHP) under atmospheric pressure, intending it as a pre-treatment method for transforming low-value lignocellulosic biomass into high-performance structural materials. The lignocellulosic biomass used in this study were Japanese cedar (Cryptomeria japonica), Hyun aspen (Populus alba x glandulosa), and bamboo (Phyllostachys pubescens), which are underutilized and low-value lignocellulosic biomass in Korea. The delignification conditions used were pH 11, liquor ratio 12.5, H2O2 (3 to 10%), temperature (25 to 100 °C), and time (1 to 24 h). Japanese cedar exhibited <30% delignification even under the most severe conditions. In contrast, Hyun aspen achieved more than double that level of delignification. However, reaching over 60% delignification was challenging. Bamboo was easily delignified, reaching approximately 80% delignification using similar conditions performed in Japanese cedar and Hyun aspen. These differences observed in AHP delignification among three species were likely to be primarily due to the structural differences and proportion of condensed units in lignin. Consequently, for Hyun aspen and bamboo, the AHP delignification process under atmospheric pressure was considered to be feasible as a pre-treatment method for high-performance structural materials.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"3 7","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139000346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lignin-derived lithiophilic nitrogen-doped three-dimensional porous carbon as lithium growth guiding layers for lithium-metal batteries 木质素衍生的亲锂氮掺杂三维多孔碳作为锂金属电池的锂生长导向层
IF 1.5 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Pub Date : 2023-12-15 DOI: 10.15376/biores.19.1.1010-1029
Nak Hyun Kim, Merry Lee, Hye Min Kwon, W. Sim, Donghyoun Kim, Samick Son, Ki Yoon Bae, Ji Young Kim, Duck Hyun Youn, Yong Sik Kim, Hyung Mo Jeong
The growing demand for high-performance next-generation lithium (Li)-based batteries has brought Li-metal anodes into the spotlight, due to their high theoretical capacity (3,860 mAh g-1) and low electrochemical potential (-3.04 V vs. SHE). However, the practical application of Li-metal anodes faces formidable challenges, primarily associated with dendritic Li growth resulting from non-uniform ion flux. Although previous studies utilizing carbonaceous materials having pores and lithiophilic atoms have demonstrated powerful performances, the complex process involving pore creation and doping with heteroatoms still has limitations in terms of cost-effectiveness. This study introduces a lithiophilic nitrogen (N)-doped three-dimensional (3D) porous carbon (NLC) by simply reusing and carbonizing NH2-functionalized lignin (NL), an eco-friendly biopolymer derived from waste wood generated during the pulping process. The NLC offers macro-porous spaces with a rich array of N-doped sites, capable of accommodating and guiding Li deposition to facilitate uniform Li growth. The results demonstrate the effectiveness of the NLC as the Li growth guiding layer in Li-metal batteries. A full cell incorporating the NLC as a Li growth guiding layer, with NCM811 as cathodes, exhibits a remarkable capacity of 145. 57 mAh g-1 even at a high C-rate of 5C and capacity retention of 90.3% (167 mAh g-1) after 150 cycles at 1C. These findings represent significant advancements compared to conventional Li-metal batteries.
由于锂金属阳极具有理论容量高(3,860 mAh g-1)和电化学电位低(-3.04 V vs. SHE)的特点,人们对高性能下一代锂(Li)电池的需求日益增长,因此锂金属阳极成为关注的焦点。然而,锂金属阳极的实际应用面临着严峻的挑战,主要与离子通量不均匀导致的树枝状锂生长有关。虽然之前利用具有孔隙和亲锂原子的碳质材料进行的研究已经证明了其强大的性能,但从成本效益的角度来看,涉及孔隙创建和杂原子掺杂的复杂过程仍然存在局限性。本研究通过对 NH2 功能化木质素(NL)进行简单的再利用和碳化,引入了一种掺杂亲锂氮(N)的三维(3D)多孔碳(NLC)。NLC 具有大孔空间,具有丰富的 N 掺杂位点阵列,能够容纳和引导锂沉积,从而促进锂的均匀生长。研究结果证明了 NLC 作为锂金属电池中的锂生长引导层的有效性。采用 NLC 作为锂生长引导层、以 NCM811 为阴极的全电池显示出 145.57 mAh g-1 的显著容量,即使在低温条件下也是如此。57 mAh g-1,并且在 1C 下循环 150 次后,容量保持率达到 90.3% (167 mAh g-1)。与传统的锂金属电池相比,这些发现代表了重大进步。
{"title":"Lignin-derived lithiophilic nitrogen-doped three-dimensional porous carbon as lithium growth guiding layers for lithium-metal batteries","authors":"Nak Hyun Kim, Merry Lee, Hye Min Kwon, W. Sim, Donghyoun Kim, Samick Son, Ki Yoon Bae, Ji Young Kim, Duck Hyun Youn, Yong Sik Kim, Hyung Mo Jeong","doi":"10.15376/biores.19.1.1010-1029","DOIUrl":"https://doi.org/10.15376/biores.19.1.1010-1029","url":null,"abstract":"The growing demand for high-performance next-generation lithium (Li)-based batteries has brought Li-metal anodes into the spotlight, due to their high theoretical capacity (3,860 mAh g-1) and low electrochemical potential (-3.04 V vs. SHE). However, the practical application of Li-metal anodes faces formidable challenges, primarily associated with dendritic Li growth resulting from non-uniform ion flux. Although previous studies utilizing carbonaceous materials having pores and lithiophilic atoms have demonstrated powerful performances, the complex process involving pore creation and doping with heteroatoms still has limitations in terms of cost-effectiveness. This study introduces a lithiophilic nitrogen (N)-doped three-dimensional (3D) porous carbon (NLC) by simply reusing and carbonizing NH2-functionalized lignin (NL), an eco-friendly biopolymer derived from waste wood generated during the pulping process. The NLC offers macro-porous spaces with a rich array of N-doped sites, capable of accommodating and guiding Li deposition to facilitate uniform Li growth. The results demonstrate the effectiveness of the NLC as the Li growth guiding layer in Li-metal batteries. A full cell incorporating the NLC as a Li growth guiding layer, with NCM811 as cathodes, exhibits a remarkable capacity of 145. 57 mAh g-1 even at a high C-rate of 5C and capacity retention of 90.3% (167 mAh g-1) after 150 cycles at 1C. These findings represent significant advancements compared to conventional Li-metal batteries.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"73 4","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138996352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of potassium hydroxide combined urea pretreatment and enzymatic hydrolysis of wheat straw using response surface methodology for improving sugar production 利用响应面方法优化氢氧化钾联合尿素预处理和酶水解小麦秸秆,提高糖产量
IF 1.5 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Pub Date : 2023-12-15 DOI: 10.15376/biores.19.1.1079-1106
H. Zhang, Junhui Wu
To improve sugar yields from wheat straw (WS), response surface methodology (RSM) was adopted to optimize potassium hydroxide combined urea pretreatment and enzymatic hydrolysis of WS. Glucose and xylose yields from the pretreated WS were used as responses during the whole optimization. Potassium hydroxide concentration, time and temperature during pretreatment were found to have significant effects on sugar yields. Sugar yields could be enhanced while WS was pretreated using 45 g/L potassium hydroxide solution containing 15 g/L urea with solid to liquid ratio of 1:5 (g/mL) at 74.0 °C for 50 min. Cellulose recovery, hemicellulose recovery, and lignin removal after optimization were 98.1%, 72.6%, and 75.8%, respectively. In addition, enzyme loading, biomass loading, and reaction time during enzymatic hydrolysis also had significant effects on sugar yields. Maximal yields of glucose (610.25 mg/gds, miligram per gram dry substrate) and xylose (221.26 mg/gds) could be achieved while hydrolysis was carried out at 50 °C for 32.8 h with 141 g/L of biomass loading, 8.1 FPU/gds (filter paper activity unit per gram dry substrate) of enzyme loading and 0.4% (w/v) of polysorbate 80. The corresponding cellulose conversion and hemicellulose conversion were 97.2% and 90.4%, respectively.
为提高小麦秸秆(WS)的糖产量,采用响应面方法(RSM)对氢氧化钾联合尿素预处理和酶水解 WS 进行了优化。在整个优化过程中,预处理 WS 的葡萄糖和木糖产量被用作响应。结果发现,预处理过程中氢氧化钾的浓度、时间和温度对糖产量有显著影响。使用含 15 克/升尿素的 45 克/升氢氧化钾溶液(固液比为 1:5(克/毫升))在 74.0 ℃ 下预处理 WS 50 分钟,可提高糖产量。优化后的纤维素回收率、半纤维素回收率和木质素去除率分别为 98.1%、72.6% 和 75.8%。此外,酶载量、生物质载量和酶水解反应时间也对糖产量有显著影响。在生物质负载量为 141 克/升、酶负载量为 8.1 FPU/gds(每克干基质的滤纸活性单位)和聚山梨醇酯 80 为 0.4%(重量比)的条件下,于 50 °C 进行水解 32.8 小时,可获得最高的葡萄糖(610.25 毫克/克)和木糖(221.26 毫克/克)产量。相应的纤维素转化率和半纤维素转化率分别为 97.2% 和 90.4%。
{"title":"Optimization of potassium hydroxide combined urea pretreatment and enzymatic hydrolysis of wheat straw using response surface methodology for improving sugar production","authors":"H. Zhang, Junhui Wu","doi":"10.15376/biores.19.1.1079-1106","DOIUrl":"https://doi.org/10.15376/biores.19.1.1079-1106","url":null,"abstract":"To improve sugar yields from wheat straw (WS), response surface methodology (RSM) was adopted to optimize potassium hydroxide combined urea pretreatment and enzymatic hydrolysis of WS. Glucose and xylose yields from the pretreated WS were used as responses during the whole optimization. Potassium hydroxide concentration, time and temperature during pretreatment were found to have significant effects on sugar yields. Sugar yields could be enhanced while WS was pretreated using 45 g/L potassium hydroxide solution containing 15 g/L urea with solid to liquid ratio of 1:5 (g/mL) at 74.0 °C for 50 min. Cellulose recovery, hemicellulose recovery, and lignin removal after optimization were 98.1%, 72.6%, and 75.8%, respectively. In addition, enzyme loading, biomass loading, and reaction time during enzymatic hydrolysis also had significant effects on sugar yields. Maximal yields of glucose (610.25 mg/gds, miligram per gram dry substrate) and xylose (221.26 mg/gds) could be achieved while hydrolysis was carried out at 50 °C for 32.8 h with 141 g/L of biomass loading, 8.1 FPU/gds (filter paper activity unit per gram dry substrate) of enzyme loading and 0.4% (w/v) of polysorbate 80. The corresponding cellulose conversion and hemicellulose conversion were 97.2% and 90.4%, respectively.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"24 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139000763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-driven soft sensors in pulp refining processes using artificial neural networks 利用人工神经网络在纸浆磨浆过程中使用数据驱动的软传感器
IF 1.5 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Pub Date : 2023-12-15 DOI: 10.15376/biores.19.1.1030-1057
Anders Karlström, Jan Hill, Lars Johansson
Pulp refining processes are most often complicated to describe using linear methodologies, and sometimes an artificial neural network (ANN) is a preferable alternative when assimilating non-linear operating data. In this study, an ANN is used to predict pulp properties, such as shives (wide), fiber length, and freeness. Both traditional process variables (external variables) and refining zone variables (internal variables) are necessary to include as model inputs. The estimation of shives (wide) results achieved an R2 (coefficient of determination) of 0.9 (0.7) for the training and (validation) sets. Corresponding measures for fiber length and freeness can be questioned using this methodology. It is shown that the maximum temperature in the flat zone can be modeled using the external variables motor load and production instead of the specific energy. This resulted in an R2 of approximately 0.9 for the training sets, while the R2 for the validation set did not reach an acceptable level – most likely due to inherent non-linearities in the process. Additional results showed that the consistency profile is difficult to estimate properly using an ANN. Instead, a model-driven sensor is preferred to be used. The main results from this study indicate that shives (wide) should be the prime candidate when introducing advanced pulp property control concepts.
使用线性方法描述纸浆精炼过程通常比较复杂,有时在吸收非线性操作数据时,人工神经网络(ANN)是一种可取的替代方法。在本研究中,ANN 被用来预测纸浆特性,如刨花(宽)、纤维长度和自由度。传统工艺变量(外部变量)和磨浆区变量(内部变量)都必须作为模型输入。在训练集和(验证)集上,对裂片(宽)的估算结果的 R2(决定系数)达到了 0.9(0.7)。利用这种方法,可以对纤维长度和自由度的相应测量值提出质疑。结果表明,可以使用外部变量电机负荷和产量而不是比能量来模拟平地区域的最高温度。这使得训练集的 R2 约为 0.9,而验证集的 R2 未达到可接受的水平--这很可能是由于过程中固有的非线性因素造成的。其他结果表明,使用 ANN 很难正确估计一致性曲线。因此,最好使用模型驱动传感器。这项研究的主要结果表明,在引入先进的纸浆特性控制概念时,刨花(宽幅)应作为主要候选。
{"title":"Data-driven soft sensors in pulp refining processes using artificial neural networks","authors":"Anders Karlström, Jan Hill, Lars Johansson","doi":"10.15376/biores.19.1.1030-1057","DOIUrl":"https://doi.org/10.15376/biores.19.1.1030-1057","url":null,"abstract":"Pulp refining processes are most often complicated to describe using linear methodologies, and sometimes an artificial neural network (ANN) is a preferable alternative when assimilating non-linear operating data. In this study, an ANN is used to predict pulp properties, such as shives (wide), fiber length, and freeness. Both traditional process variables (external variables) and refining zone variables (internal variables) are necessary to include as model inputs. The estimation of shives (wide) results achieved an R2 (coefficient of determination) of 0.9 (0.7) for the training and (validation) sets. Corresponding measures for fiber length and freeness can be questioned using this methodology. It is shown that the maximum temperature in the flat zone can be modeled using the external variables motor load and production instead of the specific energy. This resulted in an R2 of approximately 0.9 for the training sets, while the R2 for the validation set did not reach an acceptable level – most likely due to inherent non-linearities in the process. Additional results showed that the consistency profile is difficult to estimate properly using an ANN. Instead, a model-driven sensor is preferred to be used. The main results from this study indicate that shives (wide) should be the prime candidate when introducing advanced pulp property control concepts.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"1 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138997397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determining abrasion resistance of decorative coated wood-based panels using retinex model 利用 retinex 模型确定装饰涂层人造板的耐磨性
IF 1.5 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Pub Date : 2023-12-15 DOI: 10.15376/biores.19.1.1058-1078
Serdar Kaçamer, Ferzan Katırcıoğlu, M. Budakçı
An Image Processing Based Scrub Tester (IPBST) was used to imitate the effect of household chemicals on furniture and decoration elements. For this purpose, 8 mm-thick, bright white, acrylic coated medium density fiberboard (MDF), polyvinyl chloride coated MDF, MDF lam ready-to-use sheets, and cellulosic, polyurethane, acrylic, and water-based paint applied MDF sheets were used. Carbon fiber patterned decorative coating was applied to the prepared sample surfaces using the water transfer printing and ultraviolet printing methods. The surfaces of the samples were scrubbed with various household chemicals in accordance with the Turkish Standard TS EN ISO 11998. In the image processing phase, the images before and after scrubbing were first converted to hue, saturation, and value color space. The relationship between the abrasion measurement method of the proposed IPBST and the abrasion data obtained from the stereo microscope device was examined using the Pearson Correlation analysis. The relationship between both abrasion test methods was positive, very strong, and significant (0.81). Thus, the IPBST can be used as an alternative to industrial test devices as it obtains similar data.
使用基于图像处理的擦洗测试仪(IPBST)来模仿家用化学品对家具和装饰部件的影响。为此,使用了 8 毫米厚的亮白色丙烯酸涂层中密度纤维板(MDF)、聚氯乙烯涂层中密度纤维板、中密度纤维板即用板以及纤维素、聚氨酯、丙烯酸和水性涂料涂层中密度纤维板。使用水转印和紫外线打印方法在制备好的样品表面涂上碳纤维图案装饰涂层。根据土耳其标准 TS EN ISO 11998,用各种家用化学品擦洗样品表面。在图像处理阶段,首先将擦洗前后的图像转换为色调、饱和度和数值色彩空间。使用皮尔逊相关分析法检验了拟议的 IPBST 磨损测量方法与立体显微镜设备获得的磨损数据之间的关系。两种磨损测试方法之间的关系都是正相关,非常强且显著(0.81)。因此,IPBST 可用于替代工业测试设备,因为它能获得类似的数据。
{"title":"Determining abrasion resistance of decorative coated wood-based panels using retinex model","authors":"Serdar Kaçamer, Ferzan Katırcıoğlu, M. Budakçı","doi":"10.15376/biores.19.1.1058-1078","DOIUrl":"https://doi.org/10.15376/biores.19.1.1058-1078","url":null,"abstract":"An Image Processing Based Scrub Tester (IPBST) was used to imitate the effect of household chemicals on furniture and decoration elements. For this purpose, 8 mm-thick, bright white, acrylic coated medium density fiberboard (MDF), polyvinyl chloride coated MDF, MDF lam ready-to-use sheets, and cellulosic, polyurethane, acrylic, and water-based paint applied MDF sheets were used. Carbon fiber patterned decorative coating was applied to the prepared sample surfaces using the water transfer printing and ultraviolet printing methods. The surfaces of the samples were scrubbed with various household chemicals in accordance with the Turkish Standard TS EN ISO 11998. In the image processing phase, the images before and after scrubbing were first converted to hue, saturation, and value color space. The relationship between the abrasion measurement method of the proposed IPBST and the abrasion data obtained from the stereo microscope device was examined using the Pearson Correlation analysis. The relationship between both abrasion test methods was positive, very strong, and significant (0.81). Thus, the IPBST can be used as an alternative to industrial test devices as it obtains similar data.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"137 6","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138998306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phytic acid-based NP fire retardant and its effect on combustion property of poplar wood 植酸基 NP 阻燃剂及其对杨木燃烧性能的影响
IF 1.5 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Pub Date : 2023-12-14 DOI: 10.15376/biores.19.1.955-972
Shenglei Qin, Yangguang Liu, Xin Shi, Xiaoshuang Shen, Demiao Chu, Shengquan Liu
To enhance the synergistic effect of phosphorus (P) and nitrogen (N) on flame retardant property, four different phytic acid-based NP flame retardants (FR-PAN) were manufactured using phytic acid and urea with various molar ratios, ranging from 1:3 to 1:12. The FR-PAN water solution was used to impregnate poplar wood under vacuum condition, and the thermal degradation performance of the FR-PAN treated wood were investigated. Compared to untreated wood, the PAN-6 (molar ratio is 1:6) group showed a reduction of 57.1% in total heat release and 80.0% in total smoke release. In the combustion, due to the introduction of P and N, FR-PAN generates O=P/C-O/C-P/C-N bonds, forming highly graphitized char residues, which effectively isolate the entry of oxygen and heat and play a good protective role in the condensed phase. Morphological and chemical analysis of the residual char layer revealed that the introduction of P and N elements formed a more stable hybrid structure, significantly improving the thermal stability of the char layer. Among them, the PAN-6 group exhibited the highest char layer stability, indicating optimal synergistic effects of nitrogen and phosphorus under these conditions.
为了增强磷(P)和氮(N)对阻燃性能的协同作用,研究人员利用植酸和尿素以不同的摩尔比(1:3 至 1:12)制造了四种不同的植酸基氮磷阻燃剂(FR-PAN)。在真空条件下,用 FR-PAN 水溶液浸渍杨木,并研究了经 FR-PAN 处理的木材的热降解性能。与未处理的木材相比,PAN-6(摩尔比为 1:6)组的总热释放量减少了 57.1%,总烟释放量减少了 80.0%。在燃烧过程中,由于引入了 P 和 N,FR-PAN 产生了 O=P/C-O/C-P/C-N 键,形成了高度石墨化的残炭,有效地隔绝了氧气和热量的进入,在凝聚相中起到了良好的保护作用。残炭层的形态和化学分析显示,P 和 N 元素的引入形成了更稳定的杂化结构,显著提高了炭层的热稳定性。其中,PAN-6 组的炭层稳定性最高,表明氮和磷在这些条件下具有最佳的协同效应。
{"title":"Phytic acid-based NP fire retardant and its effect on combustion property of poplar wood","authors":"Shenglei Qin, Yangguang Liu, Xin Shi, Xiaoshuang Shen, Demiao Chu, Shengquan Liu","doi":"10.15376/biores.19.1.955-972","DOIUrl":"https://doi.org/10.15376/biores.19.1.955-972","url":null,"abstract":"To enhance the synergistic effect of phosphorus (P) and nitrogen (N) on flame retardant property, four different phytic acid-based NP flame retardants (FR-PAN) were manufactured using phytic acid and urea with various molar ratios, ranging from 1:3 to 1:12. The FR-PAN water solution was used to impregnate poplar wood under vacuum condition, and the thermal degradation performance of the FR-PAN treated wood were investigated. Compared to untreated wood, the PAN-6 (molar ratio is 1:6) group showed a reduction of 57.1% in total heat release and 80.0% in total smoke release. In the combustion, due to the introduction of P and N, FR-PAN generates O=P/C-O/C-P/C-N bonds, forming highly graphitized char residues, which effectively isolate the entry of oxygen and heat and play a good protective role in the condensed phase. Morphological and chemical analysis of the residual char layer revealed that the introduction of P and N elements formed a more stable hybrid structure, significantly improving the thermal stability of the char layer. Among them, the PAN-6 group exhibited the highest char layer stability, indicating optimal synergistic effects of nitrogen and phosphorus under these conditions.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"7 8","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139002625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Bioresources
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1