TwoFold: Highly accurate structure and affinity prediction for protein-ligand complexes from sequences

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE International Journal of High Performance Computing Applications Pub Date : 2023-10-30 DOI:10.1177/10943420231201151
Darren J Hsu, Hao Lu, Aditya Kashi, Michael Matheson, John Gounley, Feiyi Wang, Wayne Joubert, Jens Glaser
{"title":"TwoFold: Highly accurate structure and affinity prediction for protein-ligand complexes from sequences","authors":"Darren J Hsu, Hao Lu, Aditya Kashi, Michael Matheson, John Gounley, Feiyi Wang, Wayne Joubert, Jens Glaser","doi":"10.1177/10943420231201151","DOIUrl":null,"url":null,"abstract":"We describe our development of ab initio protein-ligand binding pose prediction models based on transformers and binding affinity prediction models based on the neural tangent kernel (NTK). Folding both protein and ligand, the TwoFold models achieve efficient and quality predictions matching state-of-the-art implementations while additionally reconstructing protein structures. Solving NTK models points to a new use case for highly optimized linear solver benchmarking codes on HPC.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"191 ","pages":"0"},"PeriodicalIF":3.5000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10943420231201151","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

We describe our development of ab initio protein-ligand binding pose prediction models based on transformers and binding affinity prediction models based on the neural tangent kernel (NTK). Folding both protein and ligand, the TwoFold models achieve efficient and quality predictions matching state-of-the-art implementations while additionally reconstructing protein structures. Solving NTK models points to a new use case for highly optimized linear solver benchmarking codes on HPC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双重:高度精确的结构和亲和预测从序列的蛋白质配体复合物
我们描述了基于变压器的从头算蛋白质配体结合位姿预测模型和基于神经切线核(NTK)的结合亲和力预测模型的开发。折叠蛋白质和配体,TwoFold模型实现了与最先进的实现相匹配的高效和高质量的预测,同时还重建了蛋白质结构。解决NTK模型指向了HPC上高度优化的线性求解器基准代码的新用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of High Performance Computing Applications
International Journal of High Performance Computing Applications 工程技术-计算机:跨学科应用
CiteScore
6.10
自引率
6.50%
发文量
32
审稿时长
>12 weeks
期刊介绍: With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.
期刊最新文献
TwoFold: Highly accurate structure and affinity prediction for protein-ligand complexes from sequences GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics General framework for re-assuring numerical reliability in parallel Krylov solvers: A case of bi-conjugate gradient stabilized methods Role-shifting threads: Increasing OpenMP malleability to address load imbalance at MPI and OpenMP Efficient implementation of low-order-precision smoothed particle hydrodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1