{"title":"Neogene drainage reorganization of Longzhong Basin driven by growth of the northeastern Tibetan Plateau: A Sr isotope hydrological perspective","authors":"Yudong Liu, Yibo Yang, Zhantao Feng, Zhongyi Yan, Yahui Yue, Fuli Wu, Bowen Song, Xiaomin Fang","doi":"10.1111/bre.12828","DOIUrl":null,"url":null,"abstract":"<p>The Tibetan Plateau uplift has significantly influenced Asian geomorphic and climate patterns. Drainage evolution across the plateau and its surroundings as the consequence of such changes in landscape and climate provides an opportunity to understand the growth of the Tibetan Plateau. However, the evolution history of major drainage areas around the Tibetan Plateau is largely unknown. Here, we reconstructed the evolution of drainage patterns of the Cenozoic Longzhong Basin in the northeastern Tibetan Plateau since the India–Asia collision using palaeo-water solute <sup>87</sup>Sr/<sup>86</sup>Sr ratio records from its subbasins. Higher solute <sup>87</sup>Sr/<sup>86</sup>Sr ratios of the Lanzhou and Xining Basins and their consistent temporal variations before ca. 22 Ma as well as lower solute <sup>87</sup>Sr/<sup>86</sup>Sr ratios in the Linxia Basin collectively indicate a relatively steady drainage pattern of the integrated Longzhong Basin. A diverse evolution of the solute <sup>87</sup>Sr/<sup>86</sup>Sr ratio in the Lanzhou and Xining Basins after ca. 22 Ma suggests that there was a drainage reorganization, characterized by the division of one into multiple catchment centres, in response to the growth of the northeastern Tibetan Plateau. Subsequently, the identical solute <sup>87</sup>Sr/<sup>86</sup>Sr ratios in the Lanzhou and Xining Basins were further approached at ca. 16 Ma, and the rise in the solute <sup>87</sup>Sr/<sup>86</sup>Sr ratios of the Linxia and Tianshui Basins occurred at ca. 9–8 Ma, indicating two subsequent changes in solute composition induced by the middle Miocene uplift and late Miocene dust expansion, respectively. Our reconstructions of Cenozoic hydrological evolution in the Longzhong Basin indicate accelerated basin segmentation and drainage adjustment with solute change in response to the growth of the northeastern Tibetan Plateau during the Neogene.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basin Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bre.12828","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Tibetan Plateau uplift has significantly influenced Asian geomorphic and climate patterns. Drainage evolution across the plateau and its surroundings as the consequence of such changes in landscape and climate provides an opportunity to understand the growth of the Tibetan Plateau. However, the evolution history of major drainage areas around the Tibetan Plateau is largely unknown. Here, we reconstructed the evolution of drainage patterns of the Cenozoic Longzhong Basin in the northeastern Tibetan Plateau since the India–Asia collision using palaeo-water solute 87Sr/86Sr ratio records from its subbasins. Higher solute 87Sr/86Sr ratios of the Lanzhou and Xining Basins and their consistent temporal variations before ca. 22 Ma as well as lower solute 87Sr/86Sr ratios in the Linxia Basin collectively indicate a relatively steady drainage pattern of the integrated Longzhong Basin. A diverse evolution of the solute 87Sr/86Sr ratio in the Lanzhou and Xining Basins after ca. 22 Ma suggests that there was a drainage reorganization, characterized by the division of one into multiple catchment centres, in response to the growth of the northeastern Tibetan Plateau. Subsequently, the identical solute 87Sr/86Sr ratios in the Lanzhou and Xining Basins were further approached at ca. 16 Ma, and the rise in the solute 87Sr/86Sr ratios of the Linxia and Tianshui Basins occurred at ca. 9–8 Ma, indicating two subsequent changes in solute composition induced by the middle Miocene uplift and late Miocene dust expansion, respectively. Our reconstructions of Cenozoic hydrological evolution in the Longzhong Basin indicate accelerated basin segmentation and drainage adjustment with solute change in response to the growth of the northeastern Tibetan Plateau during the Neogene.
期刊介绍:
Basin Research is an international journal which aims to publish original, high impact research papers on sedimentary basin systems. We view integrated, interdisciplinary research as being essential for the advancement of the subject area; therefore, we do not seek manuscripts focused purely on sedimentology, structural geology, or geophysics that have a natural home in specialist journals. Rather, we seek manuscripts that treat sedimentary basins as multi-component systems that require a multi-faceted approach to advance our understanding of their development. During deposition and subsidence we are concerned with large-scale geodynamic processes, heat flow, fluid flow, strain distribution, seismic and sequence stratigraphy, modelling, burial and inversion histories. In addition, we view the development of the source area, in terms of drainage networks, climate, erosion, denudation and sediment routing systems as vital to sedimentary basin systems. The underpinning requirement is that a contribution should be of interest to earth scientists of more than one discipline.