Yifan Deng, Yun Lei, Zehui Tang, Jiong Chen, Linhui Luo, Yongqin Wang, Can Li, Beibei Du, Shiquan Wang, Zhengguang Sun
{"title":"ZnSSe Decorated Reduced Graphene Oxide for Enhanced Photoelectric Properties","authors":"Yifan Deng, Yun Lei, Zehui Tang, Jiong Chen, Linhui Luo, Yongqin Wang, Can Li, Beibei Du, Shiquan Wang, Zhengguang Sun","doi":"10.1002/ppsc.202300101","DOIUrl":null,"url":null,"abstract":"Abstract ZSSG (ZnSSe/rGO) composites are prepared by a hydrothermal method. The structure, morphology and material properties are investigated by various tests. Compared to ZnSe, the diffraction peaks of ZnSSe are moved to a larger angle and located between cubic phase ZnSe and cubic phase ZnS. The photocurrent density of ZSSG20 with 20 wt.% graphene is 2.17×10 −5 A cm −2 , which is 8.9 times higher than that of pure ZnSSe. ZSSG20 has the minimum charge transfer resistance and highest carrier density. The decreased fluorescence intensity in PL spectra indicates that graphene can effectively prevent the recombination of electron‐hole pairs.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"15 1","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ppsc.202300101","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract ZSSG (ZnSSe/rGO) composites are prepared by a hydrothermal method. The structure, morphology and material properties are investigated by various tests. Compared to ZnSe, the diffraction peaks of ZnSSe are moved to a larger angle and located between cubic phase ZnSe and cubic phase ZnS. The photocurrent density of ZSSG20 with 20 wt.% graphene is 2.17×10 −5 A cm −2 , which is 8.9 times higher than that of pure ZnSSe. ZSSG20 has the minimum charge transfer resistance and highest carrier density. The decreased fluorescence intensity in PL spectra indicates that graphene can effectively prevent the recombination of electron‐hole pairs.
摘要采用水热法制备了ZSSG (ZnSSe/rGO)复合材料。通过各种试验研究了其结构、形貌和材料性能。与ZnSe相比,ZnSSe的衍射峰移动了更大的角度,位于立方相ZnSe和立方相ZnS之间。含20% wt.%石墨烯的ZSSG20光电流密度为2.17×10−5 A cm−2,是纯ZnSSe光电流密度的8.9倍。ZSSG20具有最小的电荷转移电阻和最高的载流子密度。PL光谱中荧光强度的降低表明石墨烯可以有效地阻止电子空穴对的复合。
期刊介绍:
Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices.
Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems.
Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others.
Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.