{"title":"Retina disease prediction using modified <scp>convolutional neural network</scp> based on <scp>Inception‐ResNet</scp> model with <scp>support vector machine</scp> classifier","authors":"Arushi Jain, Vishal Bhatnagar, Annavarapu Chandra Sekhara Rao, Manju Khari","doi":"10.1111/coin.12601","DOIUrl":null,"url":null,"abstract":"Abstract Artificial intelligence and deep learning have aided ocular disease through experiments including automatic illness recognition from images of the iris, fundus, or retina. Automated diagnosis systems (ADSs) provide services for the benefit of humanity and are essential in the early detection of harmful diseases. In fact, early detection is essential to avoid total blindness. In real life, several diagnostic tests such as visual ocular tonometry, retinal exam, and acuity test are performed, but they are conclusively time demanding and stressful for the patient. To consume time and detect the retinal disease earlier, an efficient prediction method is designed. In this proposed model, the first process is data collection that consists of a retinal disease dataset for testing and training. The second process is pre‐processing, which executes image resizing and noise filter for feature extraction. The third step is feature extraction, which extracts the image's form, size, color, and texture for classification with CNN based on Inception‐ResNet V2. The classification process is done by using the SVM with the extracted features. The prediction of diseases is classified such as normal, cataract, glaucoma, and retinal disease. The suggested model's performance is assessed using performance indicators such as accuracy, error, sensitivity, precision, and so forth. The suggested model's accuracy, error, sensitivity, and precision are 0.96, 0.962, 0.964, and 0.04, respectively, higher than existing techniques such as VGG16, Mobilenet V1, ResNet, and AlexNet. Thus, the proposed model instantly predicts retinal disease.","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/coin.12601","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Artificial intelligence and deep learning have aided ocular disease through experiments including automatic illness recognition from images of the iris, fundus, or retina. Automated diagnosis systems (ADSs) provide services for the benefit of humanity and are essential in the early detection of harmful diseases. In fact, early detection is essential to avoid total blindness. In real life, several diagnostic tests such as visual ocular tonometry, retinal exam, and acuity test are performed, but they are conclusively time demanding and stressful for the patient. To consume time and detect the retinal disease earlier, an efficient prediction method is designed. In this proposed model, the first process is data collection that consists of a retinal disease dataset for testing and training. The second process is pre‐processing, which executes image resizing and noise filter for feature extraction. The third step is feature extraction, which extracts the image's form, size, color, and texture for classification with CNN based on Inception‐ResNet V2. The classification process is done by using the SVM with the extracted features. The prediction of diseases is classified such as normal, cataract, glaucoma, and retinal disease. The suggested model's performance is assessed using performance indicators such as accuracy, error, sensitivity, precision, and so forth. The suggested model's accuracy, error, sensitivity, and precision are 0.96, 0.962, 0.964, and 0.04, respectively, higher than existing techniques such as VGG16, Mobilenet V1, ResNet, and AlexNet. Thus, the proposed model instantly predicts retinal disease.
期刊介绍:
This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.