No evidence that the widespread environmental contaminant caffeine alters energy balance or stress responses in fish

IF 1.3 4区 生物学 Q4 BEHAVIORAL SCIENCES Ethology Pub Date : 2023-09-10 DOI:10.1111/eth.13403
Hung Tan, Jack A. Brand, Bradley O. Clarke, Jack L. Manera, Jake M. Martin, Bob B. M. Wong, Lesley A. Alton
{"title":"No evidence that the widespread environmental contaminant caffeine alters energy balance or stress responses in fish","authors":"Hung Tan,&nbsp;Jack A. Brand,&nbsp;Bradley O. Clarke,&nbsp;Jack L. Manera,&nbsp;Jake M. Martin,&nbsp;Bob B. M. Wong,&nbsp;Lesley A. Alton","doi":"10.1111/eth.13403","DOIUrl":null,"url":null,"abstract":"<p>Anthropogenic sources of environmental pollution are ever-increasing as urban areas expand and more chemical compounds are used in daily life. The stimulant caffeine is one of the most consumed chemical compounds worldwide, and as a result, has been detected as an environmental contaminant in all types of major water sources on all continents. Exposure of wildlife to environmental pollutants can disrupt the energy balance of these organisms, as restoration of homeostasis is prioritised. In turn, energy allocated to other key biological processes such as growth or reproduction may be affected, consequently reducing the overall fitness of an individual. Therefore, we aimed to investigate if long-term exposure to environmentally relevant concentrations of caffeine had any energetic consequences on wildlife. Specifically, we exposed wild eastern mosquitofish (<i>Gambusia holbrooki</i>) to one of three nominal concentrations of caffeine (0, 100 and 10,000 ng/L) and assayed individuals for metabolic rate, general activity, antipredator and foraging behaviour and body size as measures of energy expenditure or energy intake. We found no differences in any measured traits between any of the given exposure treatments, indicating that exposure to caffeine at current environmental levels may not adversely affect the energy balance and fitness of vulnerable freshwater fish.</p>","PeriodicalId":50494,"journal":{"name":"Ethology","volume":"129 12","pages":"666-678"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eth.13403","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ethology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eth.13403","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Anthropogenic sources of environmental pollution are ever-increasing as urban areas expand and more chemical compounds are used in daily life. The stimulant caffeine is one of the most consumed chemical compounds worldwide, and as a result, has been detected as an environmental contaminant in all types of major water sources on all continents. Exposure of wildlife to environmental pollutants can disrupt the energy balance of these organisms, as restoration of homeostasis is prioritised. In turn, energy allocated to other key biological processes such as growth or reproduction may be affected, consequently reducing the overall fitness of an individual. Therefore, we aimed to investigate if long-term exposure to environmentally relevant concentrations of caffeine had any energetic consequences on wildlife. Specifically, we exposed wild eastern mosquitofish (Gambusia holbrooki) to one of three nominal concentrations of caffeine (0, 100 and 10,000 ng/L) and assayed individuals for metabolic rate, general activity, antipredator and foraging behaviour and body size as measures of energy expenditure or energy intake. We found no differences in any measured traits between any of the given exposure treatments, indicating that exposure to caffeine at current environmental levels may not adversely affect the energy balance and fitness of vulnerable freshwater fish.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
没有证据表明广泛存在的环境污染物咖啡因会改变鱼的能量平衡或应激反应
随着城市面积的扩大和日常生活中使用的化合物越来越多,人为的环境污染源也在不断增加。兴奋剂咖啡因是世界上消耗最多的化合物之一,因此在各大洲的所有主要水源中都被检测到是一种环境污染物。野生动物暴露于环境污染物会破坏这些生物的能量平衡,因为恢复体内平衡是优先考虑的。反过来,分配给其他关键生物过程(如生长或繁殖)的能量可能会受到影响,从而降低个体的整体适应性。因此,我们的目的是调查长期暴露于环境相关浓度的咖啡因是否对野生动物有任何能量影响。具体来说,我们将野生东方蚊鱼(Gambusia holbrooki)暴露于三种名义浓度的咖啡因(0,100和10,000 ng/L)中的一种,并分析了个体的代谢率,一般活动,抗捕食者和觅食行为以及身体大小,作为能量消耗或能量摄入的量度。我们发现,在任何给定的暴露处理之间,任何测量的特征都没有差异,这表明在当前环境水平下暴露于咖啡因可能不会对脆弱的淡水鱼的能量平衡和健康产生不利影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ethology
Ethology 生物-动物学
CiteScore
3.40
自引率
5.90%
发文量
89
审稿时长
4-8 weeks
期刊介绍: International in scope, Ethology publishes original research on behaviour including physiological mechanisms, function, and evolution. The Journal addresses behaviour in all species, from slime moulds to humans. Experimental research is preferred, both from the field and the lab, which is grounded in a theoretical framework. The section ''Perspectives and Current Debates'' provides an overview of the field and may include theoretical investigations and essays on controversial topics.
期刊最新文献
Cover Image Issue Information A Butterfly's Flash Coloration Distracts Predators—Read Future Textbook Knowledge in Ethology Call for Your Life: Acoustic Structure and Age-Sex Differences in Distress Calls of Red-Necked Nightjars The Relevance of Flash Coloration Against Avian Predation in a Morpho Butterfly: A Field Experiment in a Tropical Rainforest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1