Juan Meng, Ziping Wei, Yang Zhang, Bin Li, Chenglin Zhao
{"title":"Machine learning based low-complexity channel state information estimation","authors":"Juan Meng, Ziping Wei, Yang Zhang, Bin Li, Chenglin Zhao","doi":"10.1186/s13634-023-00994-4","DOIUrl":null,"url":null,"abstract":"Abstract In 5G communications, the acquisition of accurate channel state information (CSI) is of great importance to the hybrid beamforming of millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) system. In classical mmWave MIMO channel estimation methods, the exploitation of inherent sparse or low-rank structures has demonstrated to improve the performance. However, most high-accurate CSI estimators incur a high computational complexity and require the prior channel information, which hence present the major challenges in the practical deployment. In this work, we leverage machine learning to design the low-complexity and high-performance channel estimator. To be specific, we first formulate the CSI estimation, in the case of sparse structure, as one classical least absolute shrinkage and selection operator problem. In order to reduce the time complexity of existing compressed sensing (CS) methods, we then approximate the original optimization problem to another one, by imposing the other low-rank constraint that was barely considered by CS. We thus solve this new approximated problem and attain the near-optimal solution of the original problem. One new method excludes any prior channel information, and greatly improves the estimation performance, which only incurs a low time complexity. Simulation results demonstrate the superiority of our proposed method both in the estimation accuracy and time complexity.","PeriodicalId":49203,"journal":{"name":"Eurasip Journal on Advances in Signal Processing","volume":"90 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Advances in Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13634-023-00994-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract In 5G communications, the acquisition of accurate channel state information (CSI) is of great importance to the hybrid beamforming of millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) system. In classical mmWave MIMO channel estimation methods, the exploitation of inherent sparse or low-rank structures has demonstrated to improve the performance. However, most high-accurate CSI estimators incur a high computational complexity and require the prior channel information, which hence present the major challenges in the practical deployment. In this work, we leverage machine learning to design the low-complexity and high-performance channel estimator. To be specific, we first formulate the CSI estimation, in the case of sparse structure, as one classical least absolute shrinkage and selection operator problem. In order to reduce the time complexity of existing compressed sensing (CS) methods, we then approximate the original optimization problem to another one, by imposing the other low-rank constraint that was barely considered by CS. We thus solve this new approximated problem and attain the near-optimal solution of the original problem. One new method excludes any prior channel information, and greatly improves the estimation performance, which only incurs a low time complexity. Simulation results demonstrate the superiority of our proposed method both in the estimation accuracy and time complexity.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.