Development of intuitionistic fuzzy cost efficiency model in data envelopment analysis

Anjali Sonkariya, Shiv Prasad Yadav
{"title":"Development of intuitionistic fuzzy cost efficiency model in data envelopment analysis","authors":"Anjali Sonkariya, Shiv Prasad Yadav","doi":"10.7546/nifs.2023.29.3.298-317","DOIUrl":null,"url":null,"abstract":"Data envelopment analysis (DEA) is a non-parametric linear programming (LP) based technique to measure the relative efficiencies of decision-making units (DMUs). The conventional DEA models assume that input-output data is crisp, which may not always be feasible in practical situations due to the presence of ambiguity and imprecision. Therefore, to handle uncertain and imprecise data, the concept of intuitionistic fuzzy sets (IFS) has been introduced. In this study, the relative efficiencies of DMUs with uncertain data will be determined. For this reason, the conventional cost efficiency (CE) model of DEA is extended to IF environment. Also, the lower and upper-cost efficiency models are developed using α-cut and β-cut approach. The data for inputs, outputs and input prices are considered intuitionistic fuzzy numbers (IFNs), in particular triangular intuitionistic fuzzy numbers (TIFNs). To demonstrate the practical application of the proposed intuitionistic fuzzy cost efficiency models (IFCEMs), a numerical example is presented.","PeriodicalId":489404,"journal":{"name":"Notes on IFS","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on IFS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nifs.2023.29.3.298-317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data envelopment analysis (DEA) is a non-parametric linear programming (LP) based technique to measure the relative efficiencies of decision-making units (DMUs). The conventional DEA models assume that input-output data is crisp, which may not always be feasible in practical situations due to the presence of ambiguity and imprecision. Therefore, to handle uncertain and imprecise data, the concept of intuitionistic fuzzy sets (IFS) has been introduced. In this study, the relative efficiencies of DMUs with uncertain data will be determined. For this reason, the conventional cost efficiency (CE) model of DEA is extended to IF environment. Also, the lower and upper-cost efficiency models are developed using α-cut and β-cut approach. The data for inputs, outputs and input prices are considered intuitionistic fuzzy numbers (IFNs), in particular triangular intuitionistic fuzzy numbers (TIFNs). To demonstrate the practical application of the proposed intuitionistic fuzzy cost efficiency models (IFCEMs), a numerical example is presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据包络分析中直觉模糊成本效率模型的建立
数据包络分析(DEA)是一种基于非参数线性规划(LP)的决策单元相对效率测度方法。传统的DEA模型假设投入产出数据是清晰的,由于存在歧义和不精确,在实际情况下可能并不总是可行的。因此,为了处理不确定和不精确的数据,引入了直觉模糊集的概念。在本研究中,将确定具有不确定数据的dmu的相对效率。为此,将传统的DEA成本效率模型推广到IF环境。采用α-切割和β-切割方法建立了低成本和高成本效率模型。投入、产出和投入价格的数据被认为是直觉模糊数(ifn),特别是三角直觉模糊数(tifn)。为了说明所提出的直觉模糊成本效率模型(IFCEMs)的实际应用,给出了一个数值例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bondage and non-bondage sets in regular intuitionistic fuzzy graphs Three de-intuitionistic fuzzification procedures over circular intuitionistic fuzzy sets Development of intuitionistic fuzzy cost efficiency model in data envelopment analysis On intuitionistic fuzzy almost prime ideals and intuitionistic fuzzy almost prime submodules Four new intuitionistic fuzzy bimodal topological structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1