Eleanor Tennant, Susanna F. Jenkins, Sébastien Biass
{"title":"FlowDIR: a MATLAB tool for rapidly and probabilistically forecasting the travel directions of volcanic flows","authors":"Eleanor Tennant, Susanna F. Jenkins, Sébastien Biass","doi":"10.1186/s13617-023-00136-3","DOIUrl":null,"url":null,"abstract":"Abstract We present FlowDIR, a MATLAB tool that rapidly and objectively quantifies future travel direction probabilities for topographically controlled hazardous flows, based on analysis of summit topography. FlowDIR can achieve probabilistic forecasts of future travel directions in minutes and provides a basis for choosing the starting co-ordinates required by empirical flow models. In this work we describe the development of FlowDIR, perform a sensitivity analysis to determine the influence of input parameters on forecasted probabilities, and demonstrate its effectiveness in the retrospective forecasting of travel directions for block-and-ash flows and lava flows at three volcanoes with different summit morphologies (Shinmoedake, Colima and Merapi). In all case studies, the higher probability flow directions identified using FlowDIR agreed with the travel direction of historically observed flows. Given its intuitive outputs and rapid execution time, FlowDIR can be used to supplement existing modelling strategies for hazard assessment of topographically controlled hazardous flows prior to and during crisis. We demonstrate this by coupling FlowDIR output probabilities with an empirical hazard model to estimate probability of block-and-ash flow inundation at Gede volcano, Indonesia.","PeriodicalId":37908,"journal":{"name":"Journal of Applied Volcanology","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Volcanology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13617-023-00136-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We present FlowDIR, a MATLAB tool that rapidly and objectively quantifies future travel direction probabilities for topographically controlled hazardous flows, based on analysis of summit topography. FlowDIR can achieve probabilistic forecasts of future travel directions in minutes and provides a basis for choosing the starting co-ordinates required by empirical flow models. In this work we describe the development of FlowDIR, perform a sensitivity analysis to determine the influence of input parameters on forecasted probabilities, and demonstrate its effectiveness in the retrospective forecasting of travel directions for block-and-ash flows and lava flows at three volcanoes with different summit morphologies (Shinmoedake, Colima and Merapi). In all case studies, the higher probability flow directions identified using FlowDIR agreed with the travel direction of historically observed flows. Given its intuitive outputs and rapid execution time, FlowDIR can be used to supplement existing modelling strategies for hazard assessment of topographically controlled hazardous flows prior to and during crisis. We demonstrate this by coupling FlowDIR output probabilities with an empirical hazard model to estimate probability of block-and-ash flow inundation at Gede volcano, Indonesia.
期刊介绍:
Journal of Applied Volcanology is an international journal with a focus on applied research relating to volcanism and particularly its societal impacts. Characterising volcanic impacts and associated risk relies on not only quantifying physical threat but also understanding social and physical vulnerability and resilience. The broad aim of volcanologists in this domain is to increase public resilience to volcanic risk via research that reduces both human fatalities and volcanic impacts on livelihoods, infrastructure, and the economy. Journal of Applied Volcanology fills an important gap for scientists who want to publish research that addresses this aim and wish to reach a broad audience. The journal has a holistic view of the relationship between volcanoes and society, and therefore welcomes intra- cross- multi- inter- and transdisciplinary articles that deal with volcanoes and society. Research topics covered by the journal include: the impacts of eruptions on communities; methods for risk analysis; risk management; community preparedness, response to and recovery from volcanic hazard events; health issues related to volcanism; social adaptation to volcanic hazards; policy and institutional aspects of volcanic risk management; applications of physical volcanology, geophysics and remote sensing to volcanic crisis mitigation. The journal aims for rapid publication of high-impact research and review papers.