Improving anti-fouling properties of alumina tubular microfiltration membranes through the use of hydrophilic silica nanoparticles for oil/water separation
Anirban Ghosh, Ghader Mahmodi, Michael Miranda, Songpei Xie, Madelyn Shaw, Mark Krzmarzick, David J. Lampert, Seok-Jhin Kim, Clint P. Aichele
{"title":"Improving anti-fouling properties of alumina tubular microfiltration membranes through the use of hydrophilic silica nanoparticles for oil/water separation","authors":"Anirban Ghosh, Ghader Mahmodi, Michael Miranda, Songpei Xie, Madelyn Shaw, Mark Krzmarzick, David J. Lampert, Seok-Jhin Kim, Clint P. Aichele","doi":"10.1080/01496395.2023.2259605","DOIUrl":null,"url":null,"abstract":"ABSTRACTIn this study, hydrophilic silica nanoparticles (Si NPs) were used to modify α-alumina tubular membranes to improve their performance in terms of flux, oil rejection, and anti-fouling properties. Our work focuses on enhancing membrane performance, particularly for difficult applications such as produced water treatment. The prepared membranes were applied for oil-in-water emulsion treatment. After coating hydrophilic Si NPs, the oil contact angle improved from 133.8° to 171.4°. To prevent Si NPs from leaching off the surface of α-alumina tubular membranes, polyvinyl alcohol was used to coat the membranes as a pre-treatment step before Si NP modification. After coating the membrane with Si NPs, the roughness of the membrane surface decreased, likely leading to less fouling. After coating Si NPs, Total Organic Carbon rejection increased from 93.1% for pristine α-alumina tubular membranes to 97.7% for silica-modified membranes because of hydrophilic improvements of the modified membranes. The Si NP coating improved the anti-fouling property of membranes with the flux recovery ratio increasing from 71.3% for pristine α-alumina tubular membranes to 85.9% for silica-modified membranes. Scanning Electron Microscopy, Energy-dispersive X-ray spectroscopy, oil contact angle, and Atomic Force Microscopy characterization tests were done. The tests showed successful Si NPs impregnation and altered wettability.KEYWORDS: Oil/Water emulsionmembrane filtrationdip coatinghydrophilicitysilica modification AcknowledgmentsWe want to thank Dr. Imran Shaik for his assistance in measuring the oil contact angles.Disclosure statementNo potential conflict of interest was reported by the author(s).Statement of noveltyThe membrane development technique combines a novel pre-treatment method (using Polyvinyl alcohol) and a silica grafting technique to produce stable fumed silica coatings on membranes. After incorporating the hydrophilic Si NPs, the oil contact angle (OCA) improved from 133.8° to 171.4°. In addition, the surface roughness and associated containment traps on the membrane surface decreased, likely leading to less fouling. Total Organic Carbon (TOC) rejection increased from 93.1% for pristine α-alumina tubular membranes to 97.7% for silica-modified membranes because of hydrophilic improvements of the modified membranes. The Si NP coating improved the anti-fouling properties of membranes as evidenced by the flux recovery ratio increasing from 71.3% for pristine α-alumina tubular membranes to 85.9% for silica-modified membranes. To the best of our knowledge, there are no literature sources reporting the separation of oil and water using α-alumina membranes modified with fumed silica in a continuous cross-flow process.Additional informationFundingThe work was supported by the National Science Foundation under Grant No. OIA-1946093.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01496395.2023.2259605","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTIn this study, hydrophilic silica nanoparticles (Si NPs) were used to modify α-alumina tubular membranes to improve their performance in terms of flux, oil rejection, and anti-fouling properties. Our work focuses on enhancing membrane performance, particularly for difficult applications such as produced water treatment. The prepared membranes were applied for oil-in-water emulsion treatment. After coating hydrophilic Si NPs, the oil contact angle improved from 133.8° to 171.4°. To prevent Si NPs from leaching off the surface of α-alumina tubular membranes, polyvinyl alcohol was used to coat the membranes as a pre-treatment step before Si NP modification. After coating the membrane with Si NPs, the roughness of the membrane surface decreased, likely leading to less fouling. After coating Si NPs, Total Organic Carbon rejection increased from 93.1% for pristine α-alumina tubular membranes to 97.7% for silica-modified membranes because of hydrophilic improvements of the modified membranes. The Si NP coating improved the anti-fouling property of membranes with the flux recovery ratio increasing from 71.3% for pristine α-alumina tubular membranes to 85.9% for silica-modified membranes. Scanning Electron Microscopy, Energy-dispersive X-ray spectroscopy, oil contact angle, and Atomic Force Microscopy characterization tests were done. The tests showed successful Si NPs impregnation and altered wettability.KEYWORDS: Oil/Water emulsionmembrane filtrationdip coatinghydrophilicitysilica modification AcknowledgmentsWe want to thank Dr. Imran Shaik for his assistance in measuring the oil contact angles.Disclosure statementNo potential conflict of interest was reported by the author(s).Statement of noveltyThe membrane development technique combines a novel pre-treatment method (using Polyvinyl alcohol) and a silica grafting technique to produce stable fumed silica coatings on membranes. After incorporating the hydrophilic Si NPs, the oil contact angle (OCA) improved from 133.8° to 171.4°. In addition, the surface roughness and associated containment traps on the membrane surface decreased, likely leading to less fouling. Total Organic Carbon (TOC) rejection increased from 93.1% for pristine α-alumina tubular membranes to 97.7% for silica-modified membranes because of hydrophilic improvements of the modified membranes. The Si NP coating improved the anti-fouling properties of membranes as evidenced by the flux recovery ratio increasing from 71.3% for pristine α-alumina tubular membranes to 85.9% for silica-modified membranes. To the best of our knowledge, there are no literature sources reporting the separation of oil and water using α-alumina membranes modified with fumed silica in a continuous cross-flow process.Additional informationFundingThe work was supported by the National Science Foundation under Grant No. OIA-1946093.
期刊介绍:
This international journal deals with fundamental and applied aspects of separation processes related to a number of fields. A wide range of topics are covered in the journal including adsorption, membranes, extraction, distillation, absorption, centrifugation, crystallization, precipitation, reactive separations, hybrid processes, continuous separations, carbon capture, flocculation and magnetic separations. The journal focuses on state of the art preparative separations and theoretical contributions to the field of separation science. Applications include environmental, energy, water, and biotechnology. The journal does not publish analytical separation papers unless they contain new fundamental contributions to the field of separation science.