Sandhya Kumari, Sreenu Sreekumar, Sonika Singh, D. P. Kothari
{"title":"Wind Power Deviation Charge Reduction using Machine Learning","authors":"Sandhya Kumari, Sreenu Sreekumar, Sonika Singh, D. P. Kothari","doi":"10.13052/dgaej2156-3306.3912","DOIUrl":null,"url":null,"abstract":"High penetration of wind power plants in power systems resulted in various challenges such as frequent system imbalances due to highly uncertain and variable wind generation. Additional spinning reserves and specific balancing products such as flexible ramp products are used to handle such frequent imbalances. Incorporation of these ancillary services leads to increased total operational costs. Increased operational costs should be transferred to wind power producers as it is caused by wind power plants. This leads to penalizing the wind power producers for the deviation of power generation from forecasts, called deviation charges. These deviation charges can be reduced by improving the forecasting accuracy. Existing forecasting models show performance in terms of error matrices. Such error matrices do not indicate the financial loss associated with it. This can be overcome by expressing forecasting performance in terms of deviation charge and it will directly encourage wind power producers to improve forecasting accuracy or arrange reserves to accommodate the error. This paper proposes a backpropagation-based artificial neural network model for reducing deviation charges in this context. An analysis is conducted on the data collected from the Bonneville Power Administration (BPA) Balancing Area. Seasonal analysis (Spring, Summer, Fall, and Winter) is conducted to show the performance of the proposed model throughout the year. The proposed model performance is compared with linear regression and ARIMA models. The comparison shows that the proposed ANN model gives the least deviation charges in the Spring, Summer, and Winter seasons and deviation charges in the Fall season are higher than the ARIMA model.","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":"47 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.3912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
High penetration of wind power plants in power systems resulted in various challenges such as frequent system imbalances due to highly uncertain and variable wind generation. Additional spinning reserves and specific balancing products such as flexible ramp products are used to handle such frequent imbalances. Incorporation of these ancillary services leads to increased total operational costs. Increased operational costs should be transferred to wind power producers as it is caused by wind power plants. This leads to penalizing the wind power producers for the deviation of power generation from forecasts, called deviation charges. These deviation charges can be reduced by improving the forecasting accuracy. Existing forecasting models show performance in terms of error matrices. Such error matrices do not indicate the financial loss associated with it. This can be overcome by expressing forecasting performance in terms of deviation charge and it will directly encourage wind power producers to improve forecasting accuracy or arrange reserves to accommodate the error. This paper proposes a backpropagation-based artificial neural network model for reducing deviation charges in this context. An analysis is conducted on the data collected from the Bonneville Power Administration (BPA) Balancing Area. Seasonal analysis (Spring, Summer, Fall, and Winter) is conducted to show the performance of the proposed model throughout the year. The proposed model performance is compared with linear regression and ARIMA models. The comparison shows that the proposed ANN model gives the least deviation charges in the Spring, Summer, and Winter seasons and deviation charges in the Fall season are higher than the ARIMA model.