{"title":"Experimental Vibration Investigation of Roller Element Bearing with Combined Faults using Response Surface Methodology","authors":"Samruddhi Patel, Sanjay Patel","doi":"10.1115/1.4063947","DOIUrl":null,"url":null,"abstract":"Abstract The empirical and mathematical approach is presented in the present paper for multiple distributed and localized flaws analyses in the shaft-rotor-bearing arrangement. These flaws in the combination of inner raceway, outer raceway, and roller are measured for the analysis. To comprehend their relevance and how they affect the vibration response for the shaft-rotor-bearing mechanism, speed, load, and flaws were regarded to be the crucial process factors in this investigation. The Full Factorial method was considered for experimentation, and the experiment was done with the design of experiments (DOE) methodology. The outcomes of the vibration response trials are quantified as Root Mean Square (RMS) values for interpretation. To determine the relationship between the effects of changing process parameters onto the response of vibrations, response surface methodology (RSM) is applied. DOE is used to examine the shaft-rotor-bearing test arrangement, which is employed for exploration. In the present research, it is established how combined parametric effect analysis predicts faults in the shaft-rotor-bearing system and how it affects DOE and RSM.","PeriodicalId":17586,"journal":{"name":"Journal of Tribology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tribology-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063947","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The empirical and mathematical approach is presented in the present paper for multiple distributed and localized flaws analyses in the shaft-rotor-bearing arrangement. These flaws in the combination of inner raceway, outer raceway, and roller are measured for the analysis. To comprehend their relevance and how they affect the vibration response for the shaft-rotor-bearing mechanism, speed, load, and flaws were regarded to be the crucial process factors in this investigation. The Full Factorial method was considered for experimentation, and the experiment was done with the design of experiments (DOE) methodology. The outcomes of the vibration response trials are quantified as Root Mean Square (RMS) values for interpretation. To determine the relationship between the effects of changing process parameters onto the response of vibrations, response surface methodology (RSM) is applied. DOE is used to examine the shaft-rotor-bearing test arrangement, which is employed for exploration. In the present research, it is established how combined parametric effect analysis predicts faults in the shaft-rotor-bearing system and how it affects DOE and RSM.
期刊介绍:
The Journal of Tribology publishes over 100 outstanding technical articles of permanent interest to the tribology community annually and attracts articles by tribologists from around the world. The journal features a mix of experimental, numerical, and theoretical articles dealing with all aspects of the field. In addition to being of interest to engineers and other scientists doing research in the field, the Journal is also of great importance to engineers who design or use mechanical components such as bearings, gears, seals, magnetic recording heads and disks, or prosthetic joints, or who are involved with manufacturing processes.
Scope: Friction and wear; Fluid film lubrication; Elastohydrodynamic lubrication; Surface properties and characterization; Contact mechanics; Magnetic recordings; Tribological systems; Seals; Bearing design and technology; Gears; Metalworking; Lubricants; Artificial joints