Flatness-Based Control In Successive Loops For Autonomous Quadrotors

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Journal of Dynamic Systems Measurement and Control-Transactions of the Asme Pub Date : 2023-10-30 DOI:10.1115/1.4063907
Gerasimos Rigatos, Masoud Abbaszadeh, Krishna Busawon, Laurent Dala, Jorge Pomares, farouk zouari
{"title":"Flatness-Based Control In Successive Loops For Autonomous Quadrotors","authors":"Gerasimos Rigatos, Masoud Abbaszadeh, Krishna Busawon, Laurent Dala, Jorge Pomares, farouk zouari","doi":"10.1115/1.4063907","DOIUrl":null,"url":null,"abstract":"Abstract The control problem for the multivariable and nonlinear dynamics of unmanned rotorcrafts is treated with the use of a flatness-based control approach which is implemented in successive loops. The state-space model of 6-DOF autonomous quadrotors is separated into two subsystems, which are connected between them in cascading loops. Each one of these subsystems can be viewed independently as a differentially flat system and control about it can be performed with inversion of its dynamics as in the case of input-output linearized flat systems. The state variables of the second subsystem become virtual control inputs for the first subsystem. In turn, exogenous control inputs are applied to the second subsystem. The whole control method is implemented in two successive loops and its global stability properties are also proven through Lyapunov stability analysis. The validity of the control method is further confirmed through simulation experiments showing precise tracking of 3D flight paths by the 6-DOF quadrotor.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"4 5","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063907","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The control problem for the multivariable and nonlinear dynamics of unmanned rotorcrafts is treated with the use of a flatness-based control approach which is implemented in successive loops. The state-space model of 6-DOF autonomous quadrotors is separated into two subsystems, which are connected between them in cascading loops. Each one of these subsystems can be viewed independently as a differentially flat system and control about it can be performed with inversion of its dynamics as in the case of input-output linearized flat systems. The state variables of the second subsystem become virtual control inputs for the first subsystem. In turn, exogenous control inputs are applied to the second subsystem. The whole control method is implemented in two successive loops and its global stability properties are also proven through Lyapunov stability analysis. The validity of the control method is further confirmed through simulation experiments showing precise tracking of 3D flight paths by the 6-DOF quadrotor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于平面度的自主四旋翼机连续回路控制
摘要针对多变量非线性旋翼飞行器的控制问题,提出了一种基于平面度的连续回路控制方法。将六自由度自主四旋翼机的状态空间模型划分为两个子系统,并以级联回路的方式相互连接。这些子系统中的每一个都可以独立地看作是一个差分平面系统,并且可以像输入-输出线性化平面系统一样,通过对其动力学进行反演来对其进行控制。第二子系统的状态变量成为第一子系统的虚拟控制输入。接着,外生控制输入被应用于第二个子系统。整个控制方法在两个连续回路中实现,并通过李雅普诺夫稳定性分析证明了其全局稳定性。通过仿真实验验证了六自由度四旋翼飞行器对三维飞行轨迹的精确跟踪,进一步验证了控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
11.80%
发文量
79
审稿时长
24.0 months
期刊介绍: The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.
期刊最新文献
Spiking-Free Disturbance Observer-Based Sliding-Mode Control for Mismatched Uncertain System Current Imbalance in Dissimilar Parallel-Connected Batteries and the Fate of Degradation Convergence Self-Optimizing Vapor Compression Cycles Online With Bayesian Optimization Under Local Search Region Constraints Nonlinear Temperature Control of Additive Friction Stir Deposition Evaluated On an Echo State Network Closed-Loop Control and Plant Co-Design of a Hybrid Electric Unmanned Air Vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1