Improving Traffic Efficiency in a Road Network by Adopting Decentralised Multi-Agent Reinforcement Learning and Smart Navigation

IF 0.8 4区 工程技术 Q4 TRANSPORTATION SCIENCE & TECHNOLOGY Promet-Traffic & Transportation Pub Date : 2023-10-30 DOI:10.7307/ptt.v35i5.246
Hung Tuan Trinh, Sang-Hoon Bae, Quang Duy Tran
{"title":"Improving Traffic Efficiency in a Road Network by Adopting Decentralised Multi-Agent Reinforcement Learning and Smart Navigation","authors":"Hung Tuan Trinh, Sang-Hoon Bae, Quang Duy Tran","doi":"10.7307/ptt.v35i5.246","DOIUrl":null,"url":null,"abstract":"In the future, mixed traffic flow will consist of human-driven vehicles (HDVs) and connected autonomous vehicles (CAVs). Effective traffic management is a global challenge, especially in urban areas with many intersections. Much research has focused on solving this problem to increase intersection network performance. Reinforcement learning (RL) is a new approach to optimising traffic signal lights that overcomes the disadvantages of traditional methods. In this paper, we propose an integrated approach that combines the multi-agent advantage actor-critic (MA-A2C) and smart navigation (SN) to solve the congestion problem in a road network under mixed traffic conditions. The A2C algorithm combines the advantages of value-based and policy-based methods to stabilise the training by reducing the variance. It also overcomes the limitations of centralised and independent MARL. In addition, the SN technique reroutes traffic load to alternate paths to avoid congestion at intersections. To evaluate the robustness of our approach, we compare our model against independent-A2C (I-A2C) and max pressure (MP). These results show that our proposed approach performs more efficiently than others regarding average waiting time, speed and queue length. In addition, the simulation results also suggest that the model is effective as the CAV penetration rate is greater than 20%.","PeriodicalId":54546,"journal":{"name":"Promet-Traffic & Transportation","volume":"2 4","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Promet-Traffic & Transportation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7307/ptt.v35i5.246","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the future, mixed traffic flow will consist of human-driven vehicles (HDVs) and connected autonomous vehicles (CAVs). Effective traffic management is a global challenge, especially in urban areas with many intersections. Much research has focused on solving this problem to increase intersection network performance. Reinforcement learning (RL) is a new approach to optimising traffic signal lights that overcomes the disadvantages of traditional methods. In this paper, we propose an integrated approach that combines the multi-agent advantage actor-critic (MA-A2C) and smart navigation (SN) to solve the congestion problem in a road network under mixed traffic conditions. The A2C algorithm combines the advantages of value-based and policy-based methods to stabilise the training by reducing the variance. It also overcomes the limitations of centralised and independent MARL. In addition, the SN technique reroutes traffic load to alternate paths to avoid congestion at intersections. To evaluate the robustness of our approach, we compare our model against independent-A2C (I-A2C) and max pressure (MP). These results show that our proposed approach performs more efficiently than others regarding average waiting time, speed and queue length. In addition, the simulation results also suggest that the model is effective as the CAV penetration rate is greater than 20%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用分散式多智能体强化学习和智能导航提高路网交通效率
未来,混合交通流将由人类驾驶汽车(HDVs)和联网自动驾驶汽车(cav)组成。有效的交通管理是一个全球性的挑战,特别是在有许多十字路口的城市地区。许多研究都集中在解决这个问题,以提高交叉口网络的性能。强化学习(RL)是一种新的交通信号灯优化方法,克服了传统方法的缺点。本文提出了一种结合多智能体优势行为者批评(MA-A2C)和智能导航(SN)的集成方法来解决混合交通条件下道路网络的拥堵问题。A2C算法结合了基于值方法和基于策略方法的优点,通过减小方差来稳定训练。它还克服了集中式和独立MARL的局限性。此外,SN技术将交通负载重新路由到备用路径上,以避免交叉路口的拥堵。为了评估我们方法的稳健性,我们将我们的模型与独立a2c (I-A2C)和最大压力(MP)进行了比较。这些结果表明,我们提出的方法在平均等待时间、速度和队列长度方面比其他方法更有效。此外,仿真结果也表明,当CAV侵彻率大于20%时,该模型是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Promet-Traffic & Transportation
Promet-Traffic & Transportation 工程技术-运输科技
CiteScore
1.90
自引率
20.00%
发文量
62
审稿时长
3 months
期刊介绍: This scientific journal publishes scientific papers in the area of technical sciences, field of transport and traffic technology. The basic guidelines of the journal, which support the mission - promotion of transport science, are: relevancy of published papers and reviewer competency, established identity in the print and publishing profile, as well as other formal and informal details. The journal organisation consists of the Editorial Board, Editors, Reviewer Selection Committee and the Scientific Advisory Committee. The received papers are subject to peer review in accordance with the recommendations for international scientific journals. The papers published in the journal are placed in sections which explain their focus in more detail. The sections are: transportation economy, information and communication technology, intelligent transport systems, human-transport interaction, intermodal transport, education in traffic and transport, traffic planning, traffic and environment (ecology), traffic on motorways, traffic in the cities, transport and sustainable development, traffic and space, traffic infrastructure, traffic policy, transport engineering, transport law, safety and security in traffic, transport logistics, transport technology, transport telematics, internal transport, traffic management, science in traffic and transport, traffic engineering, transport in emergency situations, swarm intelligence in transportation engineering. The Journal also publishes information not subject to review, and classified under the following headings: book and other reviews, symposia, conferences and exhibitions, scientific cooperation, anniversaries, portraits, bibliographies, publisher information, news, etc.
期刊最新文献
Selecting the Flexible Last-Mile Delivery Models Using Multicriteria Decision-Making Passenger Queuing Analysis Method of Security Inspection and Ticket-Checking Area without Archway Metal Detector in Metro Stations Environmental Sustainability and Freight Transport Performance in the EU – An Autoregressive Conditional Heteroscedasticity (ARCH) Model Analysis Use of Structural Equation Modelling and Neural Network to Analyse Shared Parking Choice Behaviour Prediction of Electric Vehicle Energy Consumption in an Intelligent and Connected Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1