Classifying Memory Based Injections using Machine Learning

Doddagadduvalli Prasanna Amogh, Boraiah Ramesh, Rajanahally Jayakumar Bhuvan, Prasad Yash Vardhan, Anil Apekshith
{"title":"Classifying Memory Based Injections using Machine Learning","authors":"Doddagadduvalli Prasanna Amogh, Boraiah Ramesh, Rajanahally Jayakumar Bhuvan, Prasad Yash Vardhan, Anil Apekshith","doi":"10.24018/ejeng.2023.8.5.3077","DOIUrl":null,"url":null,"abstract":"This research paper explores the application of machine learning techniques to classify memory-based injection attacks. By leveraging process list data, the study focuses on distinguishing between injected and non-injected processes. Through feature engineering and training a machine learning model, the research aims to enable accurate identification of memory injection, aiding in proactive threat detection and mitigating the risk of malicious activities in computer systems.","PeriodicalId":12001,"journal":{"name":"European Journal of Engineering and Technology Research","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Engineering and Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejeng.2023.8.5.3077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research paper explores the application of machine learning techniques to classify memory-based injection attacks. By leveraging process list data, the study focuses on distinguishing between injected and non-injected processes. Through feature engineering and training a machine learning model, the research aims to enable accurate identification of memory injection, aiding in proactive threat detection and mitigating the risk of malicious activities in computer systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习对基于记忆的注射进行分类
本文探讨了机器学习技术在基于记忆的注入攻击分类中的应用。通过利用工艺列表数据,该研究侧重于区分注射和非注射工艺。通过特征工程和训练机器学习模型,该研究旨在准确识别内存注入,帮助主动检测威胁并降低计算机系统中恶意活动的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transitioning from “Grey to Green”: Nature-Based Solution Seawall for Coastal Protection Effectiveness of Suspended Lead Dampers in Steel Building Structural Model Subjected to Impact Load Effective Use of Catastrophe Multicriteria Decision Analysis in Delineating Groundwater Recharge Potential Zones Design of an Energy Efficient Buck Based LED Driver in DCM and CCM Visualization of Chladni Patterns at Low-Frequency Resonant and Non-Resonant Flexural Modes of Vibration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1