{"title":"A conditionally applied neural network algorithm for PAPR reduction without the use of a recovery process","authors":"Eldaw E. Eldukhri, Mohammed I. Al-Rayif","doi":"10.4218/etrij.2022-0470","DOIUrl":null,"url":null,"abstract":"<p>This study proposes a novel, conditionally applied neural network technique to reduce the overall peak-to-average power ratio (PAPR) of an orthogonal frequency division multiplexing (OFDM) system while maintaining an acceptable bit error rate (BER) level. The main purpose of the proposed scheme is to adjust only those subcarriers whose peaks exceed a given threshold. In this respect, the developed C-ANN algorithm suppresses only the peaks of the targeted subcarriers by slightly shifting the locations of their corresponding frequency samples without affecting their phase orientations. In turn, this achieves a reasonable system performance by sustaining a tolerable BER. For practical reasons and to cover a wide range of application scenarios, the threshold for the subcarrier peaks was chosen to be proportional to the saturation level of the nonlinear power amplifier used to pass the generated OFDM blocks. Consequently, the optimal values of the factor controlling the peak threshold were obtained that satisfy both reasonable PAPR reduction and acceptable BER levels. Furthermore, the proposed system does not require a recovery process at the receiver, thus making the computational process less complex. The simulation results show that the proposed system model performed satisfactorily, attaining both low PAPR and BER for specific application settings using comparatively fewer computations.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"46 2","pages":"227-237"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2022-0470","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2022-0470","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a novel, conditionally applied neural network technique to reduce the overall peak-to-average power ratio (PAPR) of an orthogonal frequency division multiplexing (OFDM) system while maintaining an acceptable bit error rate (BER) level. The main purpose of the proposed scheme is to adjust only those subcarriers whose peaks exceed a given threshold. In this respect, the developed C-ANN algorithm suppresses only the peaks of the targeted subcarriers by slightly shifting the locations of their corresponding frequency samples without affecting their phase orientations. In turn, this achieves a reasonable system performance by sustaining a tolerable BER. For practical reasons and to cover a wide range of application scenarios, the threshold for the subcarrier peaks was chosen to be proportional to the saturation level of the nonlinear power amplifier used to pass the generated OFDM blocks. Consequently, the optimal values of the factor controlling the peak threshold were obtained that satisfy both reasonable PAPR reduction and acceptable BER levels. Furthermore, the proposed system does not require a recovery process at the receiver, thus making the computational process less complex. The simulation results show that the proposed system model performed satisfactorily, attaining both low PAPR and BER for specific application settings using comparatively fewer computations.
期刊介绍:
ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics.
Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security.
With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.