A Multiclustering Evolutionary Hyperrectangle-Based Algorithm

Luis Alfonso Pérez Martos, Ángel Miguel García-Vico, Pedro González, Cristóbal J. Carmona del Jesus
{"title":"A Multiclustering Evolutionary Hyperrectangle-Based Algorithm","authors":"Luis Alfonso Pérez Martos, Ángel Miguel García-Vico, Pedro González, Cristóbal J. Carmona del Jesus","doi":"10.1007/s44196-023-00341-3","DOIUrl":null,"url":null,"abstract":"Abstract Clustering is a grouping technique that has long been used to relate data homogeneously. With the huge growth of complex datasets from different sources in the last decade, new paradigms have emerged. Multiclustering is a new concept within clustering that attempts to simultaneously generate multiple clusters that are bound to be different from each other, allowing to analyze and discover hidden patterns in the dataset compared to single clustering methods. This paper presents a hybrid methodology based on an evolutionary approach with the concepts of hyperrectangle for multiclustering, called MultiCHCClust. The algorithm is applied in a post-processing stage and it improves the results obtained for a clustering algorithm with respect to the partitioning of the dataset and the optimization of the number of partitions, achieving a high degree of compactness and separation of the partitioned dataset as can be observed in a complete experimental study.","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"1 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44196-023-00341-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Clustering is a grouping technique that has long been used to relate data homogeneously. With the huge growth of complex datasets from different sources in the last decade, new paradigms have emerged. Multiclustering is a new concept within clustering that attempts to simultaneously generate multiple clusters that are bound to be different from each other, allowing to analyze and discover hidden patterns in the dataset compared to single clustering methods. This paper presents a hybrid methodology based on an evolutionary approach with the concepts of hyperrectangle for multiclustering, called MultiCHCClust. The algorithm is applied in a post-processing stage and it improves the results obtained for a clustering algorithm with respect to the partitioning of the dataset and the optimization of the number of partitions, achieving a high degree of compactness and separation of the partitioned dataset as can be observed in a complete experimental study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于多聚类的进化超矩形算法
聚类是一种长期用于数据同质关联的分组技术。在过去十年中,随着来自不同来源的复杂数据集的巨大增长,新的范式已经出现。多聚类是聚类中的一个新概念,它试图同时生成彼此不同的多个聚类,与单一聚类方法相比,允许分析和发现数据集中隐藏的模式。本文提出了一种基于进化方法和超矩形概念的混合聚类方法,称为MultiCHCClust。该算法应用于后处理阶段,在数据集的分区和分区数量的优化方面改进了聚类算法的结果,在完整的实验研究中实现了分区数据集的高度紧凑性和分离性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computational Intelligence Systems
International Journal of Computational Intelligence Systems 工程技术-计算机:跨学科应用
自引率
3.40%
发文量
94
期刊介绍: The International Journal of Computational Intelligence Systems publishes original research on all aspects of applied computational intelligence, especially targeting papers demonstrating the use of techniques and methods originating from computational intelligence theory. The core theories of computational intelligence are fuzzy logic, neural networks, evolutionary computation and probabilistic reasoning. The journal publishes only articles related to the use of computational intelligence and broadly covers the following topics: -Autonomous reasoning- Bio-informatics- Cloud computing- Condition monitoring- Data science- Data mining- Data visualization- Decision support systems- Fault diagnosis- Intelligent information retrieval- Human-machine interaction and interfaces- Image processing- Internet and networks- Noise analysis- Pattern recognition- Prediction systems- Power (nuclear) safety systems- Process and system control- Real-time systems- Risk analysis and safety-related issues- Robotics- Signal and image processing- IoT and smart environments- Systems integration- System control- System modelling and optimization- Telecommunications- Time series prediction- Warning systems- Virtual reality- Web intelligence- Deep learning
期刊最新文献
A LDA-Based Social Media Data Mining Framework for Plastic Circular Economy Identifying People’s Faces in Smart Banking Systems Using Artificial Neural Networks A GMEE-WFED System: Optimizing Wind Turbine Distribution for Enhanced Renewable Energy Generation in the Future Active Exploration Deep Reinforcement Learning for Continuous Action Space with Forward Prediction Optimized Convolutional Forest by Particle Swarm Optimizer for Pothole Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1