Insights about cervical lymph nodes: Evaluating deep learning–based reconstruction for head and neck computed tomography scan

IF 1.8 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Journal of Radiology Open Pub Date : 2024-06-01 DOI:10.1016/j.ejro.2023.100534
Yu-Han Lin , An-Chi Su , Shu-Hang Ng , Min-Ru Shen , Yu-Jie Wu , Ai-Chi Chen , Chia-Wei Lee , Yu-Chun Lin
{"title":"Insights about cervical lymph nodes: Evaluating deep learning–based reconstruction for head and neck computed tomography scan","authors":"Yu-Han Lin ,&nbsp;An-Chi Su ,&nbsp;Shu-Hang Ng ,&nbsp;Min-Ru Shen ,&nbsp;Yu-Jie Wu ,&nbsp;Ai-Chi Chen ,&nbsp;Chia-Wei Lee ,&nbsp;Yu-Chun Lin","doi":"10.1016/j.ejro.2023.100534","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>This study aimed to investigate differences in cervical lymph node image quality on dual-energy computed tomography (CT) scan with datasets reconstructed using filter back projection (FBP), hybrid iterative reconstruction (IR), and deep learning–based image reconstruction (DLIR) in patients with head and neck cancer.</p></div><div><h3>Method</h3><p>Seventy patients with head and neck cancer underwent follow-up contrast-enhanced dual-energy CT examinations. All datasets were reconstructed using FBP, hybrid IR with 30 % adaptive statistical IR (ASiR-V), and DLIR with three selectable levels (low, medium, and high) at 2.5- and 0.625-mm slice thicknesses. Herein, signal, image noise, signal-to-noise ratio, and contrast-to-noise ratio of lymph nodes and overall image quality, artifact, and noise of selected regions of interest were evaluated by two radiologists. Next, cervical lymph node sharpness was evaluated using full width at half maximum.</p></div><div><h3>Results</h3><p>DLIR exhibited significantly reduced noise, ranging from 3.8 % to 35.9 % with improved signal-to-noise ratio (11.5–105.6 %) and contrast-to-noise ratio (10.5–107.5 %) compared with FBP and ASiR-V, for cervical lymph nodes (p &lt; 0.001). <em>Further, 0.625-mm-thick images reconstructed using DLIR-medium and DLIR-high had a lower noise than 2.5-mm-thick images reconstructed using FBP and ASiR-V.</em> The lymph node margins and vessels on DLIR-medium and DLIR-high were sharper than those on FBP and ASiR-V (p &lt; 0.05). Both readers agreed that DLIR had a better image quality than the conventional reconstruction algorithms.</p></div><div><h3>Conclusion</h3><p>DLIR-medium and -high provided superior cervical lymph node image quality in head and neck CT. Improved image quality affords thin-slice DLIR images for dose-reduction protocols in the future.</p></div>","PeriodicalId":38076,"journal":{"name":"European Journal of Radiology Open","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352047723000606/pdfft?md5=93fd17990034695f9a051bd544bf8580&pid=1-s2.0-S2352047723000606-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352047723000606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

This study aimed to investigate differences in cervical lymph node image quality on dual-energy computed tomography (CT) scan with datasets reconstructed using filter back projection (FBP), hybrid iterative reconstruction (IR), and deep learning–based image reconstruction (DLIR) in patients with head and neck cancer.

Method

Seventy patients with head and neck cancer underwent follow-up contrast-enhanced dual-energy CT examinations. All datasets were reconstructed using FBP, hybrid IR with 30 % adaptive statistical IR (ASiR-V), and DLIR with three selectable levels (low, medium, and high) at 2.5- and 0.625-mm slice thicknesses. Herein, signal, image noise, signal-to-noise ratio, and contrast-to-noise ratio of lymph nodes and overall image quality, artifact, and noise of selected regions of interest were evaluated by two radiologists. Next, cervical lymph node sharpness was evaluated using full width at half maximum.

Results

DLIR exhibited significantly reduced noise, ranging from 3.8 % to 35.9 % with improved signal-to-noise ratio (11.5–105.6 %) and contrast-to-noise ratio (10.5–107.5 %) compared with FBP and ASiR-V, for cervical lymph nodes (p < 0.001). Further, 0.625-mm-thick images reconstructed using DLIR-medium and DLIR-high had a lower noise than 2.5-mm-thick images reconstructed using FBP and ASiR-V. The lymph node margins and vessels on DLIR-medium and DLIR-high were sharper than those on FBP and ASiR-V (p < 0.05). Both readers agreed that DLIR had a better image quality than the conventional reconstruction algorithms.

Conclusion

DLIR-medium and -high provided superior cervical lymph node image quality in head and neck CT. Improved image quality affords thin-slice DLIR images for dose-reduction protocols in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
洞察颈部淋巴结:评估基于深度学习的头颈部计算机断层扫描重建技术
目的 本研究旨在调查头颈部癌症患者使用滤波反投影(FBP)、混合迭代重建(IR)和基于深度学习的图像重建(DLIR)重建的数据集进行双能计算机断层扫描(CT)扫描时颈部淋巴结图像质量的差异。方法 70 名头颈部癌症患者接受了后续对比增强双能 CT 检查。在 2.5 毫米和 0.625 毫米切片厚度下,使用 FBP、带有 30% 自适应统计 IR(ASiR-V)的混合 IR 和带有三种可选级别(低、中、高)的 DLIR 对所有数据集进行了重建。在此,两位放射科医生对淋巴结的信号、图像噪声、信噪比和对比噪声比以及选定感兴趣区的整体图像质量、伪影和噪声进行了评估。结果与 FBP 和 ASiR-V 相比,LLIR 能显著降低颈部淋巴结的噪点,从 3.8 % 到 35.9 % 不等,信噪比(11.5-105.6 %)和对比度-噪点比(10.5-107.5 %)也有所改善(p < 0.001)。此外,使用 DLIR-medium 和 DLIR-high 重建的 0.625 毫米厚图像的噪声低于使用 FBP 和 ASiR-V 重建的 2.5 毫米厚图像。DLIR-medium 和 DLIR-high 上的淋巴结边缘和血管比 FBP 和 ASiR-V 上的更清晰(p < 0.05)。两位读者都认为 DLIR 的图像质量优于传统的重建算法。图像质量的提高为未来减少剂量方案提供了薄切片 DLIR 图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Radiology Open
European Journal of Radiology Open Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
4.10
自引率
5.00%
发文量
55
审稿时长
51 days
期刊最新文献
Deep learning model for diagnosis of thyroid nodules with size less than 1 cm: A multicenter, retrospective study MRI-based radiomics machine learning model to differentiate non-clear cell renal cell carcinoma from benign renal tumors Post-deployment performance of a deep learning algorithm for normal and abnormal chest X-ray classification: A study at visa screening centers in the United Arab Emirates Study on the classification of benign and malignant breast lesions using a multi-sequence breast MRI fusion radiomics and deep learning model True cost estimation of common imaging procedures for cost-effectiveness analysis - insights from a Singapore hospital emergency department
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1