Seasonal enhancement of phytoplankton biomass in the southern tropical Indian Ocean: Significance of meteorological and oceanography parameters

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-04-01 DOI:10.1016/j.oceano.2023.10.003
Chinnadurai Karnan, Sreedharan Gautham
{"title":"Seasonal enhancement of phytoplankton biomass in the southern tropical Indian Ocean: Significance of meteorological and oceanography parameters","authors":"Chinnadurai Karnan,&nbsp;Sreedharan Gautham","doi":"10.1016/j.oceano.2023.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>The present study focused on understanding the seasonality of the phytoplankton biomass (chlorophyll <em>a</em>) distribution in the oligotrophic, Equatorial, and Southern Tropical Indian Ocean (ESTIO; 0–30°S and 60–90°E). The long-term satellite data analyses (2003–2020) showed a strong seasonality in sea surface temperature (SST), wind, currents, mean sea level anomaly (MSLA), photosynthetically available radiation (PAR), euphotic depth (ZEU) and mixed layer depth (MLD). As a response to the hydrographical changes, the phytoplankton biomass showed noticeable seasonal variation with the highest biomass during the Austral Winter (AW; June–September; avg. 0.11 ± 0.03 mg/m³) and lowest during the Austral Summer (AS; November–February; avg. 0.07 ± 0.03 mg/m). High chlorophyll patches (&gt;0.1 mg/m³) were found between 0°–8°S during the AS and expanded over 0°–18°S during the AW. As multi-year mean chlorophyll <em>a</em> was higher (&gt;0.1 mg/m³) in the northern part of the ESTIO (north of ∼13°S; HCD: high chlorophyll <em>a</em> domain) than the southern side (LCD: low chlorophyll <em>a</em> domain), the study area was divided into two domains and all the variables were analysed. In the HCD, enhancement of chlorophyll <em>a</em> was positively correlated with variables such as wind speed, wind stress, Ekman pumping, stronger northward and westward winds, as well as the presence of cyclonic eddies. These features are likely to stimulate primary production by uplifting the thermocline and enhancing nutrient supply. In the LCD, mixed layer depth also showed a strong positive correlation with elevated chlorophyll <em>a</em>, apparently because it is deep throughout the year (thereby keeping lower biomass) and deepens more strongly in winter than in the HCD. Another contrast with the HCD is that the cyclonic eddies appear to be insufficiently abundant to influence its chlorophyll <em>a</em>. Pearson's multivariable correlation analysis and principle component analysis confirmed the statistical significance of the above parameters on the enhancement of chlorophyll <em>a</em> in the ESTIO.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0078323423000854/pdfft?md5=1eafb48a60bf86a7c080c4eb56985577&pid=1-s2.0-S0078323423000854-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0078323423000854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The present study focused on understanding the seasonality of the phytoplankton biomass (chlorophyll a) distribution in the oligotrophic, Equatorial, and Southern Tropical Indian Ocean (ESTIO; 0–30°S and 60–90°E). The long-term satellite data analyses (2003–2020) showed a strong seasonality in sea surface temperature (SST), wind, currents, mean sea level anomaly (MSLA), photosynthetically available radiation (PAR), euphotic depth (ZEU) and mixed layer depth (MLD). As a response to the hydrographical changes, the phytoplankton biomass showed noticeable seasonal variation with the highest biomass during the Austral Winter (AW; June–September; avg. 0.11 ± 0.03 mg/m³) and lowest during the Austral Summer (AS; November–February; avg. 0.07 ± 0.03 mg/m). High chlorophyll patches (>0.1 mg/m³) were found between 0°–8°S during the AS and expanded over 0°–18°S during the AW. As multi-year mean chlorophyll a was higher (>0.1 mg/m³) in the northern part of the ESTIO (north of ∼13°S; HCD: high chlorophyll a domain) than the southern side (LCD: low chlorophyll a domain), the study area was divided into two domains and all the variables were analysed. In the HCD, enhancement of chlorophyll a was positively correlated with variables such as wind speed, wind stress, Ekman pumping, stronger northward and westward winds, as well as the presence of cyclonic eddies. These features are likely to stimulate primary production by uplifting the thermocline and enhancing nutrient supply. In the LCD, mixed layer depth also showed a strong positive correlation with elevated chlorophyll a, apparently because it is deep throughout the year (thereby keeping lower biomass) and deepens more strongly in winter than in the HCD. Another contrast with the HCD is that the cyclonic eddies appear to be insufficiently abundant to influence its chlorophyll a. Pearson's multivariable correlation analysis and principle component analysis confirmed the statistical significance of the above parameters on the enhancement of chlorophyll a in the ESTIO.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
南热带印度洋浮游植物生物量的季节性增加:气象和海洋学参数的意义
本研究的重点是了解寡营养、赤道和南热带印度洋(ESTIO;0-30°S 和 60-90°E)浮游植物生物量(叶绿素 a)分布的季节性。长期卫星数据分析(2003-2020 年)显示,海面温度(SST)、风、洋流、平均海平面异常值(MSLA)、光合可利用辐射(PAR)、透光深度(ZEU)和混合层深度(MLD)具有很强的季节性。作为对水文变化的响应,浮游植物生物量表现出明显的季节性变化,其中澳冬(AW;6 月至 9 月;平均 0.11 ± 0.03 mg/m³)生物量最高,澳夏(AS;11 月至 2 月;平均 0.07 ± 0.03 mg/m)生物量最低。高叶绿素斑块(>0.1 mg/m³)出现在南半球夏季的 0°-8°S 之间,并在南半球夏季的 0°-18°S 扩大。由于 ESTIO 北部(13°S 以北;HCD:高叶绿素 a 区域)的多年平均叶绿素 a 比南部(LCD:低叶绿素 a 区域)高(0.1 mg/m³),研究区域被分为两个区域,并对所有变量进行了分析。在高叶绿素 a 区域,叶绿素 a 的增加与风速、风压、埃克曼泵、较强的北风和西风以及气旋漩涡等变量呈正相关。这些特征可能会通过抬升温跃层和增加营养供应来刺激初级生产。在液晶区,混合层深度与叶绿素 a 的升高也呈现出很强的正相关性,这显然是因为混合层全年都很深(从而保持了较低的生物量),而且冬季的混合层深度比 HCD 更深。皮尔逊多变量相关分析和主成分分析证实,上述参数对提高 ESTIO 的叶绿素 a 具有统计学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1