Enhanced heavy and extra heavy oil recovery: Current status and new trends

IF 4.2 Q2 ENERGY & FUELS Petroleum Pub Date : 2023-10-31 DOI:10.1016/j.petlm.2023.10.001
{"title":"Enhanced heavy and extra heavy oil recovery: Current status and new trends","authors":"","doi":"10.1016/j.petlm.2023.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the increased demand for energy resources these days, especially due to the Russian-Ukrainian war, the focus of the major countries is turning strongly towards improving oil production, especially heavy and extra heavy oil, which represents 40% of the world oil reserve. Steam-based and thermal (EOR) procedures are promising techniques for recovering heavy oil reservoirs, but they suffer from a sequence of problems and complications that arise after long-term application. These complications comprise steam breakthrough, steam overlap, and steam/rock interactions. This research presents the currently applied techniques to maximize the productivity of heavy oil, such as steam injection, cyclic steam stimulation, in-situ combustion, and steam-assisted gravity drainage. Thermal technologies face numerous obstacles, as they are energy and water-intensive processes that are not environmentally friendly. The research also presents future trends in energy-saving and environmentally friendly techniques that enhance heavy oil recovery through vapor extraction (VAPEX) steam-solvent hybrid techniques, electromagnetic energy, sonication, and nanotechnology. The findings of this review reported that all the presented techniques focus on how to reduce the oil viscosity and in-situ upgrade the crude oil properties. In turn, these enhance both the productivity rate and oil recovery and minimize the production cost. This article can be considered a comprehensive review of thermal recovery methods in heavy and extra-heavy oil, in addition to screening criteria used for each method.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 3","pages":"Pages 399-410"},"PeriodicalIF":4.2000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S240565612300069X/pdfft?md5=2ae80cc9c4806c482cb7876d9013acf9&pid=1-s2.0-S240565612300069X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240565612300069X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the increased demand for energy resources these days, especially due to the Russian-Ukrainian war, the focus of the major countries is turning strongly towards improving oil production, especially heavy and extra heavy oil, which represents 40% of the world oil reserve. Steam-based and thermal (EOR) procedures are promising techniques for recovering heavy oil reservoirs, but they suffer from a sequence of problems and complications that arise after long-term application. These complications comprise steam breakthrough, steam overlap, and steam/rock interactions. This research presents the currently applied techniques to maximize the productivity of heavy oil, such as steam injection, cyclic steam stimulation, in-situ combustion, and steam-assisted gravity drainage. Thermal technologies face numerous obstacles, as they are energy and water-intensive processes that are not environmentally friendly. The research also presents future trends in energy-saving and environmentally friendly techniques that enhance heavy oil recovery through vapor extraction (VAPEX) steam-solvent hybrid techniques, electromagnetic energy, sonication, and nanotechnology. The findings of this review reported that all the presented techniques focus on how to reduce the oil viscosity and in-situ upgrade the crude oil properties. In turn, these enhance both the productivity rate and oil recovery and minimize the production cost. This article can be considered a comprehensive review of thermal recovery methods in heavy and extra-heavy oil, in addition to screening criteria used for each method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强化重油和特重油开采:现状和新趋势
由于最近能源需求的增加,特别是俄乌战争的爆发,主要国家的关注点正强烈转向提高石油产量,尤其是占世界石油储量 40% 的重油和特重油。蒸汽法和热法(EOR)是采收重油储层的有前途的技术,但在长期应用后会出现一系列问题和并发症。这些复杂问题包括蒸汽突破、蒸汽重叠以及蒸汽/岩石相互作用。本研究介绍了目前用于最大限度提高重油生产率的技术,如蒸汽注入、循环蒸汽刺激、原地燃烧和蒸汽辅助重力泄油。热技术面临诸多障碍,因为它们是能源和水密集型工艺,对环境不友好。研究还介绍了通过蒸汽萃取(VAPEX)、蒸汽-溶剂混合技术、电磁能、超声和纳米技术提高重油采收率的节能环保技术的未来发展趋势。本综述的研究结果表明,所有介绍的技术都侧重于如何降低石油粘度和就地改善原油特性。反过来,这些技术既能提高生产率和石油采收率,又能最大限度地降低生产成本。本文可被视为对重油和特重油热采方法的全面综述,此外还介绍了每种方法所使用的筛选标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Petroleum
Petroleum Earth and Planetary Sciences-Geology
CiteScore
9.20
自引率
0.00%
发文量
76
审稿时长
124 days
期刊介绍: Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing
期刊最新文献
Effect of alumina and silica nanocomposite based on polyacrylamide on light and heavy oil recovery in presence of formation water using micromodel Volumetric and viscometric properties of aqueous 1,2-dimethylethylenediamine solution for carbon capture application Iso-propyl caprylate and iso-propyl linolenate synthetic fluids as novel alternatives in deep-water drilling operations: Critical fluid properties and aerobic biodegradability assessments Leakage and diffusion characteristics of underground hydrogen pipeline Investigation of the transformation of organic matter of carbonate deposits of the Semiluksky–Mendymsky horizon under hydrothermal conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1