An investigation into the crashworthiness criteria of a top-hat structure with a dent-type crush initiator through numerical analysis

Harry Purnama
{"title":"An investigation into the crashworthiness criteria of a top-hat structure with a dent-type crush initiator through numerical analysis","authors":"Harry Purnama","doi":"10.30811/jpl.v21i5.4126","DOIUrl":null,"url":null,"abstract":"Ensuring the safety of passengers and the battery compartment in electric vehicles during frontal collisions is of utmost importance. This research aims to enhance the design of the top-hat structure used in car front rails by incorporating a crush initiator as the weakest section. The addition of a crush initiator optimizes the crashworthiness criteria by reducing peak force and increasing energy absorption. Numerical simulations were conducted using ABAQUS to validate the findings and compared against experimental results from references. The results demonstrate that the development of a top-hat structure with a dent-type crush initiator led to 27.5% decrease in peak force and 18.75% increase in energy absorption. The improvements in peak force and energy absorption could reduce the impact force and allow the crumple zone to completely absorb the kinetic energy during a collision, positively affecting the safety of passengers and battery compartments in electric vehicles","PeriodicalId":166128,"journal":{"name":"Jurnal POLIMESIN","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal POLIMESIN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30811/jpl.v21i5.4126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ensuring the safety of passengers and the battery compartment in electric vehicles during frontal collisions is of utmost importance. This research aims to enhance the design of the top-hat structure used in car front rails by incorporating a crush initiator as the weakest section. The addition of a crush initiator optimizes the crashworthiness criteria by reducing peak force and increasing energy absorption. Numerical simulations were conducted using ABAQUS to validate the findings and compared against experimental results from references. The results demonstrate that the development of a top-hat structure with a dent-type crush initiator led to 27.5% decrease in peak force and 18.75% increase in energy absorption. The improvements in peak force and energy absorption could reduce the impact force and allow the crumple zone to completely absorb the kinetic energy during a collision, positively affecting the safety of passengers and battery compartments in electric vehicles
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过数值分析,对带凹痕型碰撞起爆器的顶帽结构的耐撞性进行了研究
确保电动汽车正面碰撞时乘客和电池舱的安全至关重要。本研究的目的是通过将粉碎引发器作为最薄弱的部分,来提高汽车前轨顶帽结构的设计。添加粉碎引发剂通过降低峰值力和增加能量吸收来优化耐撞性标准。利用ABAQUS进行了数值模拟,并与文献中的实验结果进行了对比。结果表明:采用凹痕型破碎引发剂的顶帽结构,峰值力降低27.5%,吸能提高18.75%;在峰值力和能量吸收方面的改进可以减小冲击力,使碰撞时的褶皱区完全吸收动能,对电动汽车乘客和电池舱的安全产生积极影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of CNC milling parameters using the response surface method for aluminum 6061 Performance materials with variations of tractor drive wheel fin angle and low-cost manufacturing analysis Improving safety design for gas pipeline installation via horizontal directional drilling: a pipe stress analysis approach Design and manufacturing of Welded Vacuum Testing (WVT) tool Effects of modified intake surface to gasoline engine performance with the use of LPG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1