{"title":"EMPIRICAL VULNERABILITY ANALYSIS OF RAILWAY BRIDGE SEISMIC DAMAGE BASED ON 2022 MENYUAN EARTHQUAKE","authors":"Jing He, Yong Huang","doi":"10.14311/cej.2023.03.0028","DOIUrl":null,"url":null,"abstract":"A 6.9 magnitude earthquake at a depth of 10 km struck Menyuan County, Haibei Prefecture, Qinghai Province, China, on January 8, 2022. This earthquake damaged some railway bridges on the Lanzhou-Xinjiang Passenger Dedicated Line. This study combines relevant historical earthquake damage experience, considers the effects of earthquake intensity, site soil classification, superstructure type, foundation failure factor, number of spans, and total bridge length, and develops empirical formulas for seismic damage prediction of railway bridges using ordinal logistic regression model in SPSS software. The seismic damage matrix, as were the anticipated multi-intensity mean damage index and the empirical vulnerability curve based on the two-parameter lognormal distribution function, were generated on this basis. According to the conclusions, although the suggested particular equations and vulnerability curves do not apply to the remainder of the region owing to geographical uniqueness, the technical approach is valid. It may be used as a reference for seismic damage prediction and vulnerability evaluation in other regions. The empirical vulnerability analysis based on the earthquake damage prediction matrix derived from the regression analysis can provide reasonable and fast forecasts before the next earthquake.","PeriodicalId":42993,"journal":{"name":"Civil Engineering Journal-Stavebni Obzor","volume":"1 1","pages":"0"},"PeriodicalIF":0.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Journal-Stavebni Obzor","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/cej.2023.03.0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
A 6.9 magnitude earthquake at a depth of 10 km struck Menyuan County, Haibei Prefecture, Qinghai Province, China, on January 8, 2022. This earthquake damaged some railway bridges on the Lanzhou-Xinjiang Passenger Dedicated Line. This study combines relevant historical earthquake damage experience, considers the effects of earthquake intensity, site soil classification, superstructure type, foundation failure factor, number of spans, and total bridge length, and develops empirical formulas for seismic damage prediction of railway bridges using ordinal logistic regression model in SPSS software. The seismic damage matrix, as were the anticipated multi-intensity mean damage index and the empirical vulnerability curve based on the two-parameter lognormal distribution function, were generated on this basis. According to the conclusions, although the suggested particular equations and vulnerability curves do not apply to the remainder of the region owing to geographical uniqueness, the technical approach is valid. It may be used as a reference for seismic damage prediction and vulnerability evaluation in other regions. The empirical vulnerability analysis based on the earthquake damage prediction matrix derived from the regression analysis can provide reasonable and fast forecasts before the next earthquake.
期刊介绍:
The Civil Engineering Journal’s objective is to present the latest progress in research and development in civil engineering. It is desired to provide free and up to date information regarding innovations in various civil engineering fields. The Civil Engineering Journal is opened for all authors worldwide that follow the journal‘s requirements (theme, template and affirmative reviews). The journal is administrated by a public university (Civil Engineering faculty, Czech Technical University in Prague) and therefore publishing is free of charge with no exceptions. Main journal themes correspond to specialization of the Civil Engineering Faculty, CTU in Prague. Namely: Applied informatics Architecture Building Constructions and Municipal Engineering Building structures Building materials and components Building physics, building services Construction technology Construction management and economics Geodesy, Cartography, GIS Geotechnics Hydraulics and hydrology Hydraulic structures Indoor environmental and building services engineering Landscape water conservation Road and railway structures Sanitary and ecological engineering Structural mechanics Urban facility management Urban design, Town and regional planning Water management, Water structures.