Investigation of the impact of rotor shaping on the torque and radial force harmonics of a V-shape interior permanent magnet synchronous machine

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-10-16 DOI:10.1049/elp2.12380
Moien Masoumi, Alex Tsao, Charitha Abeyrathne, Ashish Sahu, Berker Bilgin
{"title":"Investigation of the impact of rotor shaping on the torque and radial force harmonics of a V-shape interior permanent magnet synchronous machine","authors":"Moien Masoumi,&nbsp;Alex Tsao,&nbsp;Charitha Abeyrathne,&nbsp;Ashish Sahu,&nbsp;Berker Bilgin","doi":"10.1049/elp2.12380","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a technique aimed at improving the performance of an interior permanent magnet synchronous machine (IPMSM) by reducing torque ripple and radial force harmonics. Unlike conventional IPMSMs, the proposed method employs a variable airgap length that is defined by a mathematical function. Two distinct rotor shapes are investigated to determine the most efficient design. Finite Element Analysis is employed to assess both the electromagnetic and mechanical attributes of the proposed motors. It compares the results for three operating points of the shaped motor with those of a conventional one. The investigation delves into the influence of rotor geometry on key output parameters, including Back Electromotive Force (back-EMF) harmonics, average torque, cogging torque, torque ripple, efficiency, power factor, and radial force harmonics. The findings indicate that optimising rotor shape can significantly enhance IPMSM performance by reducing torque ripples and radial force harmonics, while simultaneously increasing average torque and efficiency at different operating points.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12380","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12380","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a technique aimed at improving the performance of an interior permanent magnet synchronous machine (IPMSM) by reducing torque ripple and radial force harmonics. Unlike conventional IPMSMs, the proposed method employs a variable airgap length that is defined by a mathematical function. Two distinct rotor shapes are investigated to determine the most efficient design. Finite Element Analysis is employed to assess both the electromagnetic and mechanical attributes of the proposed motors. It compares the results for three operating points of the shaped motor with those of a conventional one. The investigation delves into the influence of rotor geometry on key output parameters, including Back Electromotive Force (back-EMF) harmonics, average torque, cogging torque, torque ripple, efficiency, power factor, and radial force harmonics. The findings indicate that optimising rotor shape can significantly enhance IPMSM performance by reducing torque ripples and radial force harmonics, while simultaneously increasing average torque and efficiency at different operating points.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转子整形对 V 型内部永磁同步电机扭矩和径向力谐波影响的研究
本文介绍了一种旨在通过降低扭矩纹波和径向力谐波来提高内部永磁同步电机(IPMSM)性能的技术。与传统的 IPMSM 不同,所提出的方法采用了由数学函数定义的可变气隙长度。研究了两种不同的转子形状,以确定最有效的设计。采用有限元分析来评估拟议电机的电磁和机械属性。它比较了异形电机与传统电机在三个工作点上的结果。研究深入探讨了转子几何形状对关键输出参数的影响,包括反向电动势(back-EMF)谐波、平均转矩、齿槽转矩、转矩纹波、效率、功率因数和径向力谐波。研究结果表明,优化转子形状可以减少扭矩纹波和径向力谐波,同时提高不同工作点的平均扭矩和效率,从而显著提高 IPMSM 的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1