{"title":"ViST: A Ubiquitous Model with Multimodal Fusion for Crop Growth Prediction","authors":"Junsheng Li, Ling Wang, Jie Liu, Jinshan Tang","doi":"10.1145/3627707","DOIUrl":null,"url":null,"abstract":"Crop growth prediction can help agricultural workers to make accurate and reasonable decisions on farming activities. Existing crop growth prediction models focus on one crop and train a single model for each crop. In this paper, we develop a ubiquitous growth prediction model for multiple crops, aiming to train a single model for multiple crops. A ubiquitous vision and sensor transformer(ViST) model for crop growth prediction with image and sensor data is developed to achieve the goals. In the proposed model, a cross-attention mechanism is proposed to facilitate the fusion of multimodal feature maps to reduce computational costs and balance the interactive effects among features. To train the model, we combine the data from multiple crops to create a single (ViST) model. A sensor network system is established for data collection on the farm where rice, soybean, and maize are cultivated. Experimental results show that the proposed ViST model has an excellent ubiquitous ability for crop growth prediction with multiple crops.","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"17 1","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3627707","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Crop growth prediction can help agricultural workers to make accurate and reasonable decisions on farming activities. Existing crop growth prediction models focus on one crop and train a single model for each crop. In this paper, we develop a ubiquitous growth prediction model for multiple crops, aiming to train a single model for multiple crops. A ubiquitous vision and sensor transformer(ViST) model for crop growth prediction with image and sensor data is developed to achieve the goals. In the proposed model, a cross-attention mechanism is proposed to facilitate the fusion of multimodal feature maps to reduce computational costs and balance the interactive effects among features. To train the model, we combine the data from multiple crops to create a single (ViST) model. A sensor network system is established for data collection on the farm where rice, soybean, and maize are cultivated. Experimental results show that the proposed ViST model has an excellent ubiquitous ability for crop growth prediction with multiple crops.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.