{"title":"Deep and adaptive feature extraction attention network for single image super-resolution","authors":"Jianpu Lin, Lizhao Liao, Shanling Lin, Zhixian Lin, Tailiang Guo","doi":"10.1002/jsid.1269","DOIUrl":null,"url":null,"abstract":"<p>Single image super-resolution (SISR) has been revolutionized by convolutional neural networks (CNN). However, existing SISR algorithms have feature extraction and adaptive adjustment limitations, leading to information duplication and unsatisfactory image reconstruction. In this paper, we propose a deep and adaptive feature extraction attention network (DAAN), which first fully extracts shallow features and then adaptively captures precise and fine-scale features by a deep feature extraction block (DFEB). It includes multi-dimensional feature extraction blocks (MFEBs) that combine large kernel and dynamic convolution layers to improve large-scale information utilization effectively. Finally, an enhanced spatial attention block (ESAB) to further selectively reinforce the transmission of details. A large number of experimental results show that our proposed model reconstruction performance is superior to existing classical methods.</p>","PeriodicalId":49979,"journal":{"name":"Journal of the Society for Information Display","volume":"32 1","pages":"23-33"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Society for Information Display","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsid.1269","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Single image super-resolution (SISR) has been revolutionized by convolutional neural networks (CNN). However, existing SISR algorithms have feature extraction and adaptive adjustment limitations, leading to information duplication and unsatisfactory image reconstruction. In this paper, we propose a deep and adaptive feature extraction attention network (DAAN), which first fully extracts shallow features and then adaptively captures precise and fine-scale features by a deep feature extraction block (DFEB). It includes multi-dimensional feature extraction blocks (MFEBs) that combine large kernel and dynamic convolution layers to improve large-scale information utilization effectively. Finally, an enhanced spatial attention block (ESAB) to further selectively reinforce the transmission of details. A large number of experimental results show that our proposed model reconstruction performance is superior to existing classical methods.
期刊介绍:
The Journal of the Society for Information Display publishes original works dealing with the theory and practice of information display. Coverage includes materials, devices and systems; the underlying chemistry, physics, physiology and psychology; measurement techniques, manufacturing technologies; and all aspects of the interaction between equipment and its users. Review articles are also published in all of these areas. Occasional special issues or sections consist of collections of papers on specific topical areas or collections of full length papers based in part on oral or poster presentations given at SID sponsored conferences.