Improvement of Digest2 NEO Classification Code—utilizing the Astrometry Data Exchange Standard

IF 3.3 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Publications of the Astronomical Society of the Pacific Pub Date : 2023-10-01 DOI:10.1088/1538-3873/acff87
Peter Vereš, Richard Cloete, Robert Weryk, Abraham Loeb, Matthew J. Payne
{"title":"Improvement of Digest2 NEO Classification Code—utilizing the Astrometry Data Exchange Standard","authors":"Peter Vereš, Richard Cloete, Robert Weryk, Abraham Loeb, Matthew J. Payne","doi":"10.1088/1538-3873/acff87","DOIUrl":null,"url":null,"abstract":"Abstract We describe enhancements to the digest 2 software, a short-arc orbit classifier for heliocentric orbits. Digest 2 is primarily used by the Near-Earth Object (NEO) community to flag newly discovered objects for a immediate follow-up and has been a part of NEO discovery process for more than 15 yr. We have updated the solar system population model used to weight the digest 2 score according to the 2023 catalog of known solar system orbits and extended the list of mean uncertainties for 140 observatory codes. Moreover, we have added Astrometry Data Exchange Standard (ADES) input format support to digest 2, which provides additional information for the astrometry, such as positional uncertainties for each detection. The digest 2 code was also extended to read the roving observer astrometric format as well as the ability to compute a new parameter from the provided astrometric uncertainties ( <?CDATA ${RMS}^{\\prime} $?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi mathvariant=\"italic\">RMS</mml:mi> <mml:mo accent=\"false\">′</mml:mo> </mml:math> ) that can serve as an indicator of in-tracklet curvature when compared with tracklet’s great-circle fit rms. Comparison with the previous version of digest 2 confirmed the improvement in accuracy of NEO identification and found that using ADES XML input significantly reduces the computation time of the digest 2.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"2 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of the Pacific","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1538-3873/acff87","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We describe enhancements to the digest 2 software, a short-arc orbit classifier for heliocentric orbits. Digest 2 is primarily used by the Near-Earth Object (NEO) community to flag newly discovered objects for a immediate follow-up and has been a part of NEO discovery process for more than 15 yr. We have updated the solar system population model used to weight the digest 2 score according to the 2023 catalog of known solar system orbits and extended the list of mean uncertainties for 140 observatory codes. Moreover, we have added Astrometry Data Exchange Standard (ADES) input format support to digest 2, which provides additional information for the astrometry, such as positional uncertainties for each detection. The digest 2 code was also extended to read the roving observer astrometric format as well as the ability to compute a new parameter from the provided astrometric uncertainties ( RMS ) that can serve as an indicator of in-tracklet curvature when compared with tracklet’s great-circle fit rms. Comparison with the previous version of digest 2 confirmed the improvement in accuracy of NEO identification and found that using ADES XML input significantly reduces the computation time of the digest 2.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用天体测量数据交换标准改进Digest2近地天体分类代码
摘要本文描述了对文摘2软件的改进,文摘2是一个用于日心轨道的短弧轨道分类器。摘要2主要用于近地天体(NEO)社区标记新发现的天体,以便立即跟进,并且已经成为近地天体发现过程的一部分超过15年。我们更新了用于根据2023年已知太阳系轨道目录对摘要2评分进行加权的太阳系人口模型,并扩展了140个天文台代码的平均不确定度列表。此外,我们还为摘要2增加了天体测量数据交换标准(ADES)的输入格式支持,为天体测量提供了额外的信息,如每次探测的位置不确定性。摘要2代码也被扩展为读取漫游观测者的天体测量格式,以及从提供的天体测量不确定度(RMS)中计算新参数的能力,该参数可以作为轨道内曲率的指示器,与轨道的大圆拟合RMS相比较。与以前版本的摘要2相比,证实了NEO识别精度的提高,并且发现使用ADES XML输入显著减少了摘要2的计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Publications of the Astronomical Society of the Pacific
Publications of the Astronomical Society of the Pacific 地学天文-天文与天体物理
CiteScore
6.70
自引率
5.70%
发文量
103
审稿时长
4-8 weeks
期刊介绍: The Publications of the Astronomical Society of the Pacific (PASP), the technical journal of the Astronomical Society of the Pacific (ASP), has been published regularly since 1889, and is an integral part of the ASP''s mission to advance the science of astronomy and disseminate astronomical information. The journal provides an outlet for astronomical results of a scientific nature and serves to keep readers in touch with current astronomical research. It contains refereed research and instrumentation articles, invited and contributed reviews, tutorials, and dissertation summaries.
期刊最新文献
The Valuable Long-period Cluster Cepheid KQ Scorpii and other Calibration Candidates A New Parameterization for Finding Solutions for Microlensing Exoplanet Light Curves Multi-amplifier Sensing Charge-coupled Devices for Next Generation Spectroscopy Ejecta Masses in Type Ia Supernovae—Implications for the Progenitor and the Explosion Scenario* * Based in part on observations obtained with the Hobby-Eberly Telescope (HET), which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Ludwig-Maximillians-Universitaet Muenchen, and Georg-August Universitaet Goettingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly. Physical Properties of Embedded Clusters in ATLASGAL Clumps with H ii Regions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1