Kenneth W. Lin, Armin Karcher, Julien Guy, Stephen E. Holland, William F. Kolbe, Peter E. Nugent, Alex Drlica-Wagner, Ana M. Botti, Javier Tiffenberg
{"title":"Multi-amplifier Sensing Charge-coupled Devices for Next Generation Spectroscopy","authors":"Kenneth W. Lin, Armin Karcher, Julien Guy, Stephen E. Holland, William F. Kolbe, Peter E. Nugent, Alex Drlica-Wagner, Ana M. Botti, Javier Tiffenberg","doi":"10.1088/1538-3873/ad716c","DOIUrl":null,"url":null,"abstract":"We present characterization results and performance of a prototype Multiple-Amplifier Sensing (MAS) silicon charge-coupled device (CCD) sensor with 16 channels potentially suitable for faint object astronomical spectroscopy and low-signal, photon-limited imaging. The MAS CCD is designed to reach sub-electron readout noise by repeatedly measuring charge through a line of amplifiers during the serial transfer shifts. Using synchronized readout electronics based on the Dark Energy Spectroscopic Instrument CCD controller, we report a read noise of 1.03 e<sup>−</sup> rms pix<sup>−1</sup> at a speed of 26 <italic toggle=\"yes\">μ</italic>s pix<sup>−1</sup> with a single-sample readout scheme where charge in a pixel is measured only once for each output stage. At these operating parameters, we find the amplifier-to-amplifier charge transfer efficiency (ACTE) to be >0.9995 at low counts for all amplifiers but one for which the ACTE is 0.997. This charge transfer efficiency falls above 50,000 electrons for the read-noise optimized voltage configuration we chose for the serial clocks and gates. The amplifier linearity across a broad dynamic range from ∼300 to 35,000 e<sup>−</sup> was also measured to be ±2.5%. We describe key operating parameters to optimize on these characteristics and describe the specific applications for which the MAS CCD may be a suitable detector candidate.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"98 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of the Pacific","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1538-3873/ad716c","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present characterization results and performance of a prototype Multiple-Amplifier Sensing (MAS) silicon charge-coupled device (CCD) sensor with 16 channels potentially suitable for faint object astronomical spectroscopy and low-signal, photon-limited imaging. The MAS CCD is designed to reach sub-electron readout noise by repeatedly measuring charge through a line of amplifiers during the serial transfer shifts. Using synchronized readout electronics based on the Dark Energy Spectroscopic Instrument CCD controller, we report a read noise of 1.03 e− rms pix−1 at a speed of 26 μs pix−1 with a single-sample readout scheme where charge in a pixel is measured only once for each output stage. At these operating parameters, we find the amplifier-to-amplifier charge transfer efficiency (ACTE) to be >0.9995 at low counts for all amplifiers but one for which the ACTE is 0.997. This charge transfer efficiency falls above 50,000 electrons for the read-noise optimized voltage configuration we chose for the serial clocks and gates. The amplifier linearity across a broad dynamic range from ∼300 to 35,000 e− was also measured to be ±2.5%. We describe key operating parameters to optimize on these characteristics and describe the specific applications for which the MAS CCD may be a suitable detector candidate.
期刊介绍:
The Publications of the Astronomical Society of the Pacific (PASP), the technical journal of the Astronomical Society of the Pacific (ASP), has been published regularly since 1889, and is an integral part of the ASP''s mission to advance the science of astronomy and disseminate astronomical information. The journal provides an outlet for astronomical results of a scientific nature and serves to keep readers in touch with current astronomical research. It contains refereed research and instrumentation articles, invited and contributed reviews, tutorials, and dissertation summaries.