Low-Power Heterodyne Receiver Architectures: Review, Theory, and Examples

Aman Gupta;Trevor J. Odelberg;David D. Wentzloff
{"title":"Low-Power Heterodyne Receiver Architectures: Review, Theory, and Examples","authors":"Aman Gupta;Trevor J. Odelberg;David D. Wentzloff","doi":"10.1109/OJSSCS.2023.3322671","DOIUrl":null,"url":null,"abstract":"The growth of the Internet of Things (IoT) has led to a massive upsurge in low-power radio research. Specifically, low-power receivers (RX) have been developed that efficiently receive data and extend the battery life for energy-constrained IoT systems. This has led to innovations in energy-detector (ED) first RXs which can achieve much lower power than traditional mixer-based heterodyne architectures. However, at such low-power levels, the RX performance is extremely limited. Oftentimes, low-power RXs have severe performance limitations, including lower data rate, limited blocker rejection, lower sensitivity, lower tolerance to PVT, limited modulation compatibility, and increased size and cost of off-chip components to achieve passive gain. This greatly limits the application of such RXs in real-world applications and prevents many of the low-power circuit techniques from translating to commercial standards. In this work, we look to motivate research into low-power heterodyne RX architectures which can support higher order modulation and have improved RX specifications while retaining low power.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"3 ","pages":"225-238"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10275080","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10275080/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growth of the Internet of Things (IoT) has led to a massive upsurge in low-power radio research. Specifically, low-power receivers (RX) have been developed that efficiently receive data and extend the battery life for energy-constrained IoT systems. This has led to innovations in energy-detector (ED) first RXs which can achieve much lower power than traditional mixer-based heterodyne architectures. However, at such low-power levels, the RX performance is extremely limited. Oftentimes, low-power RXs have severe performance limitations, including lower data rate, limited blocker rejection, lower sensitivity, lower tolerance to PVT, limited modulation compatibility, and increased size and cost of off-chip components to achieve passive gain. This greatly limits the application of such RXs in real-world applications and prevents many of the low-power circuit techniques from translating to commercial standards. In this work, we look to motivate research into low-power heterodyne RX architectures which can support higher order modulation and have improved RX specifications while retaining low power.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低功耗外差接收器架构:回顾、理论和示例
物联网(IoT)的发展带动了低功耗无线电研究的迅猛发展。特别是低功耗接收器(RX)的开发,可有效接收数据并延长能源受限的物联网系统的电池寿命。这导致了能量检测器(ED)第一接收器的创新,它可以实现比传统的基于混频器的外差架构更低的功耗。然而,在这种低功耗水平下,RX 性能极为有限。低功耗 RX 通常具有严重的性能限制,包括较低的数据速率、有限的阻塞抑制、较低的灵敏度、较低的 PVT 容限、有限的调制兼容性,以及为实现无源增益而增加的片外元件尺寸和成本。这极大地限制了此类 RX 在实际应用中的应用,并阻碍了许多低功耗电路技术转化为商业标准。在这项工作中,我们希望推动对低功耗外差式 RX 架构的研究,这种架构可以支持更高阶的调制,并在保持低功耗的同时改进 RX 规格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Problem of Spurious Emissions in 5G FR2 Phased Arrays, and a Solution Based on an Upmixer With Embedded LO Leakage Cancellation SAR-Assisted Energy-Efficient Hybrid ADCs Systematic Equation-Based Design of a 10-Bit, 500-MS/s Single-Channel SAR A/D Converter With 2-GHz Resolution Bandwidth Digital Phase-Locked Loops: Exploring Different Boundaries 8-Shaped Inductors: An Essential Addition to RFIC Designers’ Toolbox
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1