{"title":"Ecological environment value assessment and ecological civilization in the Changjiang River basin","authors":"Zhaoli Ma, Xia Guo","doi":"10.1111/wej.12900","DOIUrl":null,"url":null,"abstract":"Abstract With the rapid growth of urbanization and industrialization, the strain on resources and the environment has intensified, resulting in challenges such as soil erosion and biodiversity loss. To address these issues, the development of a circular economy and eco‐cities has become crucial. This article proposes an ecosystem assessment model based on the backpropagation neural network (BPNN) that incorporates environmental carrying capacity and energy regeneration capacity. The model aims to evaluate the ecological service value of wetlands in the Changjiang River basin. The results demonstrate that the proposed model outperforms other comparison methods, exhibiting a high level of accuracy. Furthermore, the simulation outcomes indicate that enhancing eco‐efficiency can enhance the environmental carrying capacity and energy regeneration capacity of the ecosystem, ultimately leading to an overall improvement in ecosystem value.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":"49 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water and Environment Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/wej.12900","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract With the rapid growth of urbanization and industrialization, the strain on resources and the environment has intensified, resulting in challenges such as soil erosion and biodiversity loss. To address these issues, the development of a circular economy and eco‐cities has become crucial. This article proposes an ecosystem assessment model based on the backpropagation neural network (BPNN) that incorporates environmental carrying capacity and energy regeneration capacity. The model aims to evaluate the ecological service value of wetlands in the Changjiang River basin. The results demonstrate that the proposed model outperforms other comparison methods, exhibiting a high level of accuracy. Furthermore, the simulation outcomes indicate that enhancing eco‐efficiency can enhance the environmental carrying capacity and energy regeneration capacity of the ecosystem, ultimately leading to an overall improvement in ecosystem value.
期刊介绍:
Water and Environment Journal is an internationally recognised peer reviewed Journal for the dissemination of innovations and solutions focussed on enhancing water management best practice. Water and Environment Journal is available to over 12,000 institutions with a further 7,000 copies physically distributed to the Chartered Institution of Water and Environmental Management (CIWEM) membership, comprised of environment sector professionals based across the value chain (utilities, consultancy, technology suppliers, regulators, government and NGOs). As such, the journal provides a conduit between academics and practitioners. We therefore particularly encourage contributions focussed at the interface between academia and industry, which deliver industrially impactful applied research underpinned by scientific evidence. We are keen to attract papers on a broad range of subjects including:
-Water and wastewater treatment for agricultural, municipal and industrial applications
-Sludge treatment including processing, storage and management
-Water recycling
-Urban and stormwater management
-Integrated water management strategies
-Water infrastructure and distribution
-Climate change mitigation including management of impacts on agriculture, urban areas and infrastructure