Today, microplastics have become one of the most important environmental concerns. Wastewater treatment plants are a major source of microplastics in the environment. The aim of this study is to track and assess the risk of microplastics in a wastewater treatment plant. Samples were taken from different units of sewage treatment plants in the spring and winter. Microplastics were separated using sieves and density‐based methods. Analysis revealed a higher abundance of microplastics in spring. The highest amount of microplastic removal was in the disinfection and secondary sedimentation units in the winter season. Fragments are the most common shape. Poly Ethylene Terephthalate (PET) polymers were most prevalent. Black was the most common colour. Poly Ethylene (PE), PET and poly Amide (PA) polymers posed the highest risk, according to calculations. One of the most important ways to prevent microplastics from entering water sources is to reduce the consumption of plastic materials, recycle plastic waste and remove microplastics from the wastewater treatment process.
{"title":"Tracking and risk assessment of microplastics in a wastewater treatment plant","authors":"Hossein Kamani, Mehdi Ghayebzadeh, Fatemeh Ganji","doi":"10.1111/wej.12949","DOIUrl":"https://doi.org/10.1111/wej.12949","url":null,"abstract":"Today, microplastics have become one of the most important environmental concerns. Wastewater treatment plants are a major source of microplastics in the environment. The aim of this study is to track and assess the risk of microplastics in a wastewater treatment plant. Samples were taken from different units of sewage treatment plants in the spring and winter. Microplastics were separated using sieves and density‐based methods. Analysis revealed a higher abundance of microplastics in spring. The highest amount of microplastic removal was in the disinfection and secondary sedimentation units in the winter season. Fragments are the most common shape. Poly Ethylene Terephthalate (PET) polymers were most prevalent. Black was the most common colour. Poly Ethylene (PE), PET and poly Amide (PA) polymers posed the highest risk, according to calculations. One of the most important ways to prevent microplastics from entering water sources is to reduce the consumption of plastic materials, recycle plastic waste and remove microplastics from the wastewater treatment process.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":"185 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thea Ekins‐Coward, Francesca Mei Ho, Ivor Whittle, Ruth Viñuela
Commercialization of microalgae for wastewater treatment (WWT) is limited due to the large footprints and long hydraulic retention times (HRT) of standard systems, making integration into wastewater (WW) grey infrastructure unfeasible. Industrial Phycology Ltd has developed a process that manipulates the metabolic plasticity of microalgae for WWT. Initial batch trials in a 27 m3 demonstration plant treating municipal tertiary WW achieved a final effluent of 0.27 ± 0.2 mg/L and 0.009 ± 0.003 mg/L phosphate and ammonium, respectively, in 12 h HRT. A continuous flow‐through system was retrofitted onto a small rural WWT site owned by South West Water for tertiary treatment. Phosphate and emerging contaminants (ECs) were monitored over 12 months at an average flow of 1.5–2.2 m3/h. Consistent phosphate removal was observed with a reduction in ECs within a HRT of 16.5 h. This demonstrates that the microalgae process can retrofitted as a green infrastructure option, delivering benefits vital to sustainable development.
{"title":"Microalgae as a multibenefit natural solution for the wastewater industry: A UK pilot‐scale study","authors":"Thea Ekins‐Coward, Francesca Mei Ho, Ivor Whittle, Ruth Viñuela","doi":"10.1111/wej.12950","DOIUrl":"https://doi.org/10.1111/wej.12950","url":null,"abstract":"Commercialization of microalgae for wastewater treatment (WWT) is limited due to the large footprints and long hydraulic retention times (HRT) of standard systems, making integration into wastewater (WW) grey infrastructure unfeasible. Industrial Phycology Ltd has developed a process that manipulates the metabolic plasticity of microalgae for WWT. Initial batch trials in a 27 m<jats:sup>3</jats:sup> demonstration plant treating municipal tertiary WW achieved a final effluent of 0.27 ± 0.2 mg/L and 0.009 ± 0.003 mg/L phosphate and ammonium, respectively, in 12 h HRT. A continuous flow‐through system was retrofitted onto a small rural WWT site owned by South West Water for tertiary treatment. Phosphate and emerging contaminants (ECs) were monitored over 12 months at an average flow of 1.5–2.2 m<jats:sup>3</jats:sup>/h. Consistent phosphate removal was observed with a reduction in ECs within a HRT of 16.5 h. This demonstrates that the microalgae process can retrofitted as a green infrastructure option, delivering benefits vital to sustainable development.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":"12 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wastewater treatment plants (WWTPs) are high‐energy consumers and major Greenhouse Gas (GHG) emitters. This review offers a comprehensive global overview of the current utilization of machine learning (ML) to optimize energy usage and reduce emissions in WWTPs. It compiles and analyses findings from over a hundred studies primarily conducted within the last decade. These studies are organized into five primary areas: energy consumption (EC), aeration energy (AE), pumping energy (PE), sludge treatment energy (STE) and greenhouse gas (GHG). Additionally, they are further categorized based on learning type, the scale of application, geographic location, year, performance metrics, software, etc. ANNs emerged as the most prevalent, closely trailed by FL and RF. While GA and PSO are the predominant metaheuristic approaches. Despite increasing complexity, researchers are inclined towards employing hybrid models to enhance performance. Reported reductions in energy consumption or GHG emissions spanned various ranges, falling within the 0–10%, 10–20% and >20% brackets.
{"title":"Advancements in machine learning modelling for energy and emissions optimization in wastewater treatment plants: A systematic review","authors":"Taher Abunama, Antoine Dellieu, Stéphane Nonet","doi":"10.1111/wej.12945","DOIUrl":"https://doi.org/10.1111/wej.12945","url":null,"abstract":"Wastewater treatment plants (WWTPs) are high‐energy consumers and major Greenhouse Gas (GHG) emitters. This review offers a comprehensive global overview of the current utilization of machine learning (ML) to optimize energy usage and reduce emissions in WWTPs. It compiles and analyses findings from over a hundred studies primarily conducted within the last decade. These studies are organized into five primary areas: energy consumption (EC), aeration energy (AE), pumping energy (PE), sludge treatment energy (STE) and greenhouse gas (GHG). Additionally, they are further categorized based on learning type, the scale of application, geographic location, year, performance metrics, software, etc. ANNs emerged as the most prevalent, closely trailed by FL and RF. While GA and PSO are the predominant metaheuristic approaches. Despite increasing complexity, researchers are inclined towards employing hybrid models to enhance performance. Reported reductions in energy consumption or GHG emissions spanned various ranges, falling within the 0–10%, 10–20% and >20% brackets.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":"21 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141576495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md Sahil Rafiq, Mohammad Shakhawat Hosen Apurba, Nadim Reza Khandaker
The textile industry is vital to Bangladesh's economy, employing over three million women and being the top foreign exchange earner. However, it severely impacts the environment because of untreated wastewater discharge. High treatment costs, reliant on expensive imported chemicals, worsen the issue. The Environmental Conservation Rules (ECR) 2023 of Bangladesh requires textile wastewater discharge to have a colour of less than 150 Pt‐Co, which current systems struggle to meet affordably. A pilot project tested a sustainable solution using chemical oxidation with calcium hypochlorite and sand filtration with blast furnace iron slag. This method effectively removed colour, and the treated water showed total dissolved solids (TDS) levels of 157 ± 4 mg/L, total suspended solids (TSS) levels of 8 ± 2 mg/L and chemical oxygen demand (COD) levels of 9 ± 3 mg/L, with reductions of 92%, 87% and 94%, respectively, making it a viable solution for resource‐limited economies.
{"title":"Enhancing textile wastewater sustainability through calcium hypochlorite oxidation and subsequent filtration with assistance from waste blast furnace iron slag","authors":"Md Sahil Rafiq, Mohammad Shakhawat Hosen Apurba, Nadim Reza Khandaker","doi":"10.1111/wej.12948","DOIUrl":"https://doi.org/10.1111/wej.12948","url":null,"abstract":"The textile industry is vital to Bangladesh's economy, employing over three million women and being the top foreign exchange earner. However, it severely impacts the environment because of untreated wastewater discharge. High treatment costs, reliant on expensive imported chemicals, worsen the issue. The Environmental Conservation Rules (ECR) 2023 of Bangladesh requires textile wastewater discharge to have a colour of less than 150 Pt‐Co, which current systems struggle to meet affordably. A pilot project tested a sustainable solution using chemical oxidation with calcium hypochlorite and sand filtration with blast furnace iron slag. This method effectively removed colour, and the treated water showed total dissolved solids (TDS) levels of 157 ± 4 mg/L, total suspended solids (TSS) levels of 8 ± 2 mg/L and chemical oxygen demand (COD) levels of 9 ± 3 mg/L, with reductions of 92%, 87% and 94%, respectively, making it a viable solution for resource‐limited economies.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":"38 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141576496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emine Sule Tecirli, Kadir Akgun, Abdulkadir Caglak, Hanife Sari Erkan, Guleda Onkal Engin
Membrane bioreactor (MBR) is a promising technology for the treatment of municipal and industrial wastewater, including highly contaminated textile wastewater. However, membrane fouling remains a critical challenge due to reduced flux. This study investigates the efficacy of a moving bed MBR (MB‐MBR) technology for textile wastewater treatment, focusing on chemical oxygen demand (COD) removal, and its impact on mitigating membrane fouling. In a 50‐day study, a conventional MBR (R1) was compared with an MB‐MBR (R2) augmented with free‐floating biocarriers (accounting for 20% of the reactor volume). Both systems used flat sheet ceramic membrane modules. The results indicate that the MB‐MBR achieved superior performance, with COD and colour removal of 89% and 81%, respectively, compared with 87% and 73% in the conventional MBR. Importantly, the introduction of biocarriers eliminated the need for offline physical membrane cleaning in the MB‐MBR. The free‐floating biocarriers lowered transmembrane pressure, reduced capillary suction time and reduced fouling through their scouring action.
{"title":"Treatment of textile wastewater in a single‐step moving bed‐membrane bioreactor: Comparison with conventional membrane bioreactor in terms of performance and membrane fouling","authors":"Emine Sule Tecirli, Kadir Akgun, Abdulkadir Caglak, Hanife Sari Erkan, Guleda Onkal Engin","doi":"10.1111/wej.12942","DOIUrl":"https://doi.org/10.1111/wej.12942","url":null,"abstract":"Membrane bioreactor (MBR) is a promising technology for the treatment of municipal and industrial wastewater, including highly contaminated textile wastewater. However, membrane fouling remains a critical challenge due to reduced flux. This study investigates the efficacy of a moving bed MBR (MB‐MBR) technology for textile wastewater treatment, focusing on chemical oxygen demand (COD) removal, and its impact on mitigating membrane fouling. In a 50‐day study, a conventional MBR (R<jats:sub>1</jats:sub>) was compared with an MB‐MBR (R<jats:sub>2</jats:sub>) augmented with free‐floating biocarriers (accounting for 20% of the reactor volume). Both systems used flat sheet ceramic membrane modules. The results indicate that the MB‐MBR achieved superior performance, with COD and colour removal of 89% and 81%, respectively, compared with 87% and 73% in the conventional MBR. Importantly, the introduction of biocarriers eliminated the need for offline physical membrane cleaning in the MB‐MBR. The free‐floating biocarriers lowered transmembrane pressure, reduced capillary suction time and reduced fouling through their scouring action.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":"18 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Improving the environmental quality of effluent‐dominated seasonal rivers is a fundamental challenge for sustaining life in drylands, where people utilize contaminated water to produce food, which ultimately accumulates in the food chain. Preventing further contaminations and phytoremediation are needed to avoid environmental degradation and health risks. This study aimed at analysing water quality and its impacts on soil and vegetation at effluent‐impacted, river‐edge and non‐polluted (control) micro‐habitats at five sites along Luni, Bandi and Jojari Rivers each in western Rajasthan. Soil and water samples were collected and analysed, and vegetation was recorded. River water exhibited high pH (7.60–8.60), electrical conductivity (EC; 2.45–38.20 dS m−1), total dissolved solid (TDS; 1.26–30.86 g L−1), alkalinity (24.0–250.0 mg L−1) and Na (1.50–30.00 g L−1), K (29.0–1100.0 mg L−1), Ca (136.0–3800.0 mg L−1) and Mn (0.05–83.92 mg L−1) concentrations and low NH4‐N, NO3‐N, PO4‐P and heavy metals. Species numbers ranged between 32 along Luni and 20 along Jojari. Soil pH, EC, PO4‐P and shrub richness (R), diversity (H′) and evenness (e') were highest for Bandi, whereas NH4‐N, NO3‐N, K and tree R and H′ were highest for Jojari River. Soil variables decreased and plant diversity increased downstream. Concentrations of Cd, Zn, Cr, Cu and Pb were above the acceptable limit in leaf of Salvadora persica and Prosopis juliflora. Principal component analysis (PCA) revealed significant relationships between different variables of river water, soil, and vegetation and 11 PCA axes. Conclusively, industry effluents negatively affected water, soil and river ecology. Effluent‐impacted soils had high salinity and less diversity adapted by salt‐tolerant species, complementary effects of which contribute to restoring the modified ecosystem and urban greening. Although people utilize effluent‐contaminated water in irrigation, precautions should be taken to avoid environmental and animal/human health risks.
{"title":"Changing soil properties influenced vegetation diversity along effluent‐dominated river courses in dry areas of north‐western India","authors":"Genda Singh, Prem Raj Nagora, Parul Haksar, Deepak Mishra","doi":"10.1111/wej.12943","DOIUrl":"https://doi.org/10.1111/wej.12943","url":null,"abstract":"Improving the environmental quality of effluent‐dominated seasonal rivers is a fundamental challenge for sustaining life in drylands, where people utilize contaminated water to produce food, which ultimately accumulates in the food chain. Preventing further contaminations and phytoremediation are needed to avoid environmental degradation and health risks. This study aimed at analysing water quality and its impacts on soil and vegetation at effluent‐impacted, river‐edge and non‐polluted (control) micro‐habitats at five sites along Luni, Bandi and Jojari Rivers each in western Rajasthan. Soil and water samples were collected and analysed, and vegetation was recorded. River water exhibited high pH (7.60–8.60), electrical conductivity (EC; 2.45–38.20 dS m<jats:sup>−1</jats:sup>), total dissolved solid (TDS; 1.26–30.86 g L<jats:sup>−1</jats:sup>), alkalinity (24.0–250.0 mg L<jats:sup>−1</jats:sup>) and Na (1.50–30.00 g L<jats:sup>−1</jats:sup>), K (29.0–1100.0 mg L<jats:sup>−1</jats:sup>), Ca (136.0–3800.0 mg L<jats:sup>−1</jats:sup>) and Mn (0.05–83.92 mg L<jats:sup>−1</jats:sup>) concentrations and low NH<jats:sub>4</jats:sub>‐N, NO<jats:sub>3</jats:sub>‐N, PO<jats:sub>4</jats:sub>‐P and heavy metals. Species numbers ranged between 32 along Luni and 20 along Jojari. Soil pH, EC, PO<jats:sub>4</jats:sub>‐P and shrub richness (R), diversity (H′) and evenness (e') were highest for Bandi, whereas NH<jats:sub>4</jats:sub>‐N, NO<jats:sub>3</jats:sub>‐N, K and tree R and H′ were highest for Jojari River. Soil variables decreased and plant diversity increased downstream. Concentrations of Cd, Zn, Cr, Cu and Pb were above the acceptable limit in leaf of <jats:styled-content style=\"fixed-case\"><jats:italic>Salvadora persica</jats:italic></jats:styled-content> and <jats:styled-content style=\"fixed-case\"><jats:italic>Prosopis juliflora</jats:italic></jats:styled-content>. Principal component analysis (PCA) revealed significant relationships between different variables of river water, soil, and vegetation and 11 PCA axes. Conclusively, industry effluents negatively affected water, soil and river ecology. Effluent‐impacted soils had high salinity and less diversity adapted by salt‐tolerant species, complementary effects of which contribute to restoring the modified ecosystem and urban greening. Although people utilize effluent‐contaminated water in irrigation, precautions should be taken to avoid environmental and animal/human health risks.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":"14 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Livhuwani Vele, Eunice Ubomba‐Jaswa, Joshua Nosa Edokpayi
This study discusses the critical importance of sustainable access to clean water, particularly in regions facing severe water shortages. The study investigates the public perception of harvested rainwater as a solution to water scarcity in South Africa's semi arid regions. Conducted with 110 respondents, it explores demographics, rainwater harvesting practices, storage methods, and factors affecting satisfaction. Most households (39.6%) had four to six members, with a balanced gender distribution. Despite widespread unemployment (53.2%), 33.6% were graduates. Rainwater was harvested primarily during rainfall (64.9%), with 94.5% of the respondents collected from their own roofs. Storage methods included JoJo tanks (41.8%) and small buckets (54.5%). Concerningly, 95.5% did not test water quality, yet 64.5% found it acceptable. Regression analysis showed water quality significantly influenced satisfaction (b = 0.623, p < 0.005). The high prevalence of rainwater harvesting underscores its potential to address water shortages sustainably.
{"title":"Perception and acceptability of the public towards the use of harvested rainwater in water scarce regions","authors":"Livhuwani Vele, Eunice Ubomba‐Jaswa, Joshua Nosa Edokpayi","doi":"10.1111/wej.12944","DOIUrl":"https://doi.org/10.1111/wej.12944","url":null,"abstract":"This study discusses the critical importance of sustainable access to clean water, particularly in regions facing severe water shortages. The study investigates the public perception of harvested rainwater as a solution to water scarcity in South Africa's semi arid regions. Conducted with 110 respondents, it explores demographics, rainwater harvesting practices, storage methods, and factors affecting satisfaction. Most households (39.6%) had four to six members, with a balanced gender distribution. Despite widespread unemployment (53.2%), 33.6% were graduates. Rainwater was harvested primarily during rainfall (64.9%), with 94.5% of the respondents collected from their own roofs. Storage methods included JoJo tanks (41.8%) and small buckets (54.5%). Concerningly, 95.5% did not test water quality, yet 64.5% found it acceptable. Regression analysis showed water quality significantly influenced satisfaction (<jats:italic>b</jats:italic> = 0.623, <jats:italic>p</jats:italic> < 0.005). The high prevalence of rainwater harvesting underscores its potential to address water shortages sustainably.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":"41 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to develop an energy‐efficient process for treating highly saline textile wastewater (TWW) in a 10 m3/day pilot plant and evaluate forage sorghum irrigation with treated wastewater in terms of crop production and soil and irrigation device performance. The TWW treatment pilot plant, consisting of a coagulation/flocculation unit followed by a sand filter and an anion exchange resin column, produced treated effluent that complied with the permissible limits specified in the ISO 16075‐2:2020 standard for Category C irrigation water. The corresponding average energy consumption was 1.77 kWh/m3. Reusing treated TWW for forage sorghum irrigation over a 13‐week cycle yielded crop performances comparable with freshwater irrigation, with no negative impact on the irrigation system. Although soil profiles were similar between treated TWW and freshwater irrigation, both soils featured an increase in electrical conductivity, which may reversibly or irreversibly affect soil quality and damage salt‐sensitive crops. These findings demonstrate the effective treatment and reuse of saline TWW for irrigating salt‐tolerant crops, offering significant implications for industrial wastewater management and cropping patterns in arid and semi‐arid regions.
本研究旨在开发一种高能效工艺,用于在一个 10 立方米/天的试验工厂中处理高含盐纺织废水(TWW),并从作物产量、土壤和灌溉设备性能的角度对利用处理后的废水灌溉牧草高粱进行评估。高浓度纺织废水处理试验设备由混凝/絮凝装置、砂滤器和阴离子交换树脂柱组成,处理后的废水符合 ISO 16075-2:2020 C 类灌溉水标准规定的允许限度。相应的平均能耗为 1.77 kWh/m3。在 13 周的周期内,将处理过的原水用于牧草高粱灌溉,作物产量与淡水灌溉相当,且对灌溉系统没有负面影响。虽然经过处理的原水和淡水灌溉的土壤剖面相似,但两种土壤的导电率都有所增加,这可能会对土壤质量造成可逆或不可逆的影响,并损害对盐分敏感的作物。这些研究结果表明,可以有效处理和再利用含盐原水灌溉耐盐作物,对干旱和半干旱地区的工业废水管理和种植模式具有重要意义。
{"title":"Demonstration scale chemical–physical treatment and agricultural reuse of highly saline textile wastewater","authors":"Fatma Arous, Chadlia Hamdi, Salma Bessadok, Soumaya Boudagga, Ayda Aydi, Wentao Li, Stathis Kyriacou, Davide Pinelli, Dario Frascari, Atef Jaouani","doi":"10.1111/wej.12946","DOIUrl":"https://doi.org/10.1111/wej.12946","url":null,"abstract":"This study aimed to develop an energy‐efficient process for treating highly saline textile wastewater (TWW) in a 10 m<jats:sup>3</jats:sup>/day pilot plant and evaluate forage sorghum irrigation with treated wastewater in terms of crop production and soil and irrigation device performance. The TWW treatment pilot plant, consisting of a coagulation/flocculation unit followed by a sand filter and an anion exchange resin column, produced treated effluent that complied with the permissible limits specified in the ISO 16075‐2:2020 standard for Category C irrigation water. The corresponding average energy consumption was 1.77 kWh/m<jats:sup>3</jats:sup>. Reusing treated TWW for forage sorghum irrigation over a 13‐week cycle yielded crop performances comparable with freshwater irrigation, with no negative impact on the irrigation system. Although soil profiles were similar between treated TWW and freshwater irrigation, both soils featured an increase in electrical conductivity, which may reversibly or irreversibly affect soil quality and damage salt‐sensitive crops. These findings demonstrate the effective treatment and reuse of saline TWW for irrigating salt‐tolerant crops, offering significant implications for industrial wastewater management and cropping patterns in arid and semi‐arid regions.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":"13 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuan Zhi, Caiju Li, Longyue Liang, Paul B. Hamilton, Yuanyuan Sun, Debin Xiong
The virtual water strategy (VWS) is an effective tool to balance regional water resource endowments and guarantee water supply security. However, because of self‐interested games around VWS (human decision bias), there is a need for methods to maintain reliable cooperation between governments, virtual water (VW) enterprises and research institutions. This study builds a multi‐agent evolutionary game model to analyse the relationship of players and their impacts on VWS through changing decision mechanisms and the paths to enhance their confidence in cooperation. Considering differences in initial willingness to cooperate and changing factors affecting payoffs, an evolutionary game can produce changing stable equilibriums or stable cooperations, even if some players are reluctant to cooperate. Therefore, to promote the development of VWS, a multistep support mechanism can be built for the VW industry, which fosters model enterprises and optimizes the cooperation framework to stimulate research innovations at scientific institutions.
{"title":"Government‐industrial‐research cooperation in virtual water strategy: A multi‐agent evolutionary game analysis","authors":"Yuan Zhi, Caiju Li, Longyue Liang, Paul B. Hamilton, Yuanyuan Sun, Debin Xiong","doi":"10.1111/wej.12947","DOIUrl":"https://doi.org/10.1111/wej.12947","url":null,"abstract":"The virtual water strategy (VWS) is an effective tool to balance regional water resource endowments and guarantee water supply security. However, because of self‐interested games around VWS (human decision bias), there is a need for methods to maintain reliable cooperation between governments, virtual water (VW) enterprises and research institutions. This study builds a multi‐agent evolutionary game model to analyse the relationship of players and their impacts on VWS through changing decision mechanisms and the paths to enhance their confidence in cooperation. Considering differences in initial willingness to cooperate and changing factors affecting payoffs, an evolutionary game can produce changing stable equilibriums or stable cooperations, even if some players are reluctant to cooperate. Therefore, to promote the development of VWS, a multistep support mechanism can be built for the VW industry, which fosters model enterprises and optimizes the cooperation framework to stimulate research innovations at scientific institutions.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":"26 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial: For water and environment journal 38(3)","authors":"Brian T. Hawkins","doi":"10.1111/wej.12941","DOIUrl":"https://doi.org/10.1111/wej.12941","url":null,"abstract":"","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":"46 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}