Narrative Asset Pricing: Interpretable Systematic Risk Factors from News Text

IF 6.8 1区 经济学 Q1 BUSINESS, FINANCE Review of Financial Studies Pub Date : 2023-05-15 DOI:10.1093/rfs/hhad042
Leland Bybee, Bryan Kelly, Yinan Su
{"title":"Narrative Asset Pricing: Interpretable Systematic Risk Factors from News Text","authors":"Leland Bybee, Bryan Kelly, Yinan Su","doi":"10.1093/rfs/hhad042","DOIUrl":null,"url":null,"abstract":"Abstract We estimate a narrative factor pricing model from news text of The Wall Street Journal. Our empirical method integrates topic modeling (LDA), latent factor analysis (IPCA), and variable selection (group lasso). Narrative factors achieve higher out-of-sample Sharpe ratios and smaller pricing errors than standard characteristic-based factor models and predict future investment opportunities in a manner consistent with the ICAPM. We derive an interpretation of the estimated risk factors from narratives in the underlying article text. Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online","PeriodicalId":21124,"journal":{"name":"Review of Financial Studies","volume":"12 1","pages":"0"},"PeriodicalIF":6.8000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Financial Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/rfs/hhad042","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We estimate a narrative factor pricing model from news text of The Wall Street Journal. Our empirical method integrates topic modeling (LDA), latent factor analysis (IPCA), and variable selection (group lasso). Narrative factors achieve higher out-of-sample Sharpe ratios and smaller pricing errors than standard characteristic-based factor models and predict future investment opportunities in a manner consistent with the ICAPM. We derive an interpretation of the estimated risk factors from narratives in the underlying article text. Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web site next to the link to the final published paper online
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
叙述性资产定价:新闻文本中可解释的系统风险因素
摘要本文从《华尔街日报》的新闻文本中估计了一个叙事因素定价模型。我们的实证方法整合了主题建模(LDA)、潜在因素分析(IPCA)和变量选择(group lasso)。与标准的基于特征的因子模型相比,叙事因子具有更高的样本外夏普比率和更小的定价误差,并以与ICAPM一致的方式预测未来的投资机会。我们从潜在文章文本的叙述中得出对估计风险因素的解释。作者们提供了一份互联网附录,可以在牛津大学出版社的网站上找到,就在最终发表论文的链接旁边
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.00
自引率
2.40%
发文量
83
期刊介绍: The Review of Financial Studies is a prominent platform that aims to foster and widely distribute noteworthy research in financial economics. With an expansive editorial board, the Review strives to maintain a balance between theoretical and empirical contributions. The primary focus of paper selection is based on the quality and significance of the research to the field of finance, rather than its level of technical complexity. The scope of finance within the Review encompasses its intersection with economics. Sponsoring The Society for Financial Studies, the Review and the Society appoint editors and officers through limited terms.
期刊最新文献
Pay-As-You-Go Insurance: Experimental Evidence on Consumer Demand and Behavior Exchange Rate Dynamics and Monetary Spillovers with Imperfect Financial Markets Gender Bias in Promotions: Evidence from Financial Institutions The Cost of Bank Regulatory Capital Desperate House Sellers: Distress among Developers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1