Thermodynamic Bounds of Terrestrial Water-Energy Coupling and Resiliency in Global Ecosystems

Debasish Mishra, Vinit Sehgal, Binayak P Mohanty
{"title":"Thermodynamic Bounds of Terrestrial Water-Energy Coupling and Resiliency in Global Ecosystems","authors":"Debasish Mishra, Vinit Sehgal, Binayak P Mohanty","doi":"10.22541/au.170000976.64787854/v1","DOIUrl":null,"url":null,"abstract":"Increasing climatic variability has resulted in an unprecedented surge in extreme events, pressing global ecosystems towards systematic breakdown. Yet, the resilience of the soil-vegetation-atmosphere (SVA) system to revert to its natural state indicates the existence of energetic barriers forbidding systems from tipping. Observational and theoretical constraints limit our understanding of these energetic barriers which are crucial for assessing ecosystem sensitivity to atmospheric perturbations. We provide a novel coherent theory on the dissipative energy barriers (𝛥e) which decides the resilience potential of an ecosystem. These barriers are manifestation of lower bounds of entropy produced ( Σ *) for unit anomaly transference from soil moisture (SM) to evapotranspiration (ET). Using remote sensing data, we compute these global entropy bounds by introducing a new metric (Wasserstein distance, ) for SM-ET coupling. Quantifying these lower bounds from SM-ET coupling, places terrestrial ecosystems in the hierarchy of dissipative energy states spanning from forested regions to barren lands. Furthermore, we show that the optimization of SM-ET coupling translates to entanglement of water potential gradient (∆ω) between land surface and atmospheric boundary layer, and the resulting memory timescale or residence time (τ). This (τ.∆ω) entanglement propels moisture-rich and moisture-deficit systems in complementary evolutionary pathways in responding to imposed anomalies. As a result, we witness an emergence of coupling-aridity tradeoff with temperate climates operating as least efficient systems for unit SM to ET anomaly transfer. Physical basis, and transferability across space and scale makes this theory a potential benchmark for process improvement in the climate and earth system models.","PeriodicalId":487619,"journal":{"name":"Authorea (Authorea)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Authorea (Authorea)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22541/au.170000976.64787854/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing climatic variability has resulted in an unprecedented surge in extreme events, pressing global ecosystems towards systematic breakdown. Yet, the resilience of the soil-vegetation-atmosphere (SVA) system to revert to its natural state indicates the existence of energetic barriers forbidding systems from tipping. Observational and theoretical constraints limit our understanding of these energetic barriers which are crucial for assessing ecosystem sensitivity to atmospheric perturbations. We provide a novel coherent theory on the dissipative energy barriers (𝛥e) which decides the resilience potential of an ecosystem. These barriers are manifestation of lower bounds of entropy produced ( Σ *) for unit anomaly transference from soil moisture (SM) to evapotranspiration (ET). Using remote sensing data, we compute these global entropy bounds by introducing a new metric (Wasserstein distance, ) for SM-ET coupling. Quantifying these lower bounds from SM-ET coupling, places terrestrial ecosystems in the hierarchy of dissipative energy states spanning from forested regions to barren lands. Furthermore, we show that the optimization of SM-ET coupling translates to entanglement of water potential gradient (∆ω) between land surface and atmospheric boundary layer, and the resulting memory timescale or residence time (τ). This (τ.∆ω) entanglement propels moisture-rich and moisture-deficit systems in complementary evolutionary pathways in responding to imposed anomalies. As a result, we witness an emergence of coupling-aridity tradeoff with temperate climates operating as least efficient systems for unit SM to ET anomaly transfer. Physical basis, and transferability across space and scale makes this theory a potential benchmark for process improvement in the climate and earth system models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
陆地水-能耦合和全球生态系统恢复的热力学边界
日益增加的气候变化导致极端事件前所未有地激增,迫使全球生态系统走向系统性崩溃。然而,土壤-植被-大气(SVA)系统恢复到自然状态的弹性表明存在阻止系统倾倒的能量障碍。观测和理论的限制限制了我们对这些能量障碍的理解,而这些能量障碍对于评估生态系统对大气扰动的敏感性至关重要。我们提供了一个关于耗散能量障碍的新的连贯理论(𝛥e),它决定了生态系统的恢复潜力。这些障碍是土壤水分(SM)向蒸散发(ET)单位异常转移产生的熵的下界(Σ *)的表现。利用遥感数据,我们通过引入SM-ET耦合的新度量(Wasserstein距离)来计算这些全局熵界。从SM-ET耦合中量化这些下限,将陆地生态系统置于从森林地区到荒地的耗散能量状态等级中。此外,我们发现SM-ET耦合的优化转化为陆地表面和大气边界层之间水势梯度(∆ω)的纠缠,以及由此产生的记忆时间尺度或停留时间(τ)。这种(τ.∆ω)纠缠推动富湿系统和亏湿系统在互补的进化途径中响应强加的异常。因此,我们看到了耦合-干旱权衡的出现,温带气候作为单位SM到ET异常转移的最低效系统。物理基础和跨空间和尺度的可转移性使该理论成为气候和地球系统模式过程改进的潜在基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heart rate variability biofeedback acutely improves attentional control only in highly stressed individuals Relationship between microRNA-9 and breast cancer The impact of land use change on the diversity and emergence of fungal pathogens Severe seasonal shifts in tropical insect ephemerality drive bat foraging effort Using Circulating MicroRNAs as Noninvasive Cancer Biomarkers in Breast Cancer is a Cutting-Edge Application of MicroRNA Profiling Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1