RF Signal Feature Extraction in Integrated Sensing and Communication

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC IET Signal Processing Pub Date : 2023-10-28 DOI:10.1049/2023/4251265
Xiaoya Wang, Songlin Sun, Haiying Zhang, Qiang Liu
{"title":"RF Signal Feature Extraction in Integrated Sensing and Communication","authors":"Xiaoya Wang, Songlin Sun, Haiying Zhang, Qiang Liu","doi":"10.1049/2023/4251265","DOIUrl":null,"url":null,"abstract":"Because of the open property of information sharing in integrated sensing and communication, it is inevitable to face security problems such as user information being tampered, eavesdropped, and copied. Radio frequency (RF) individual identification technology is an important means to solve its security problems at present. Whether using machine learning methods or current deep learning-based target fingerprint identification, its performance is based on how well the radio frequency features (RFF) are extracted. Since the received signal is affected by various factors, we believe that we should first find the intrinsic features that can describe the properties of the target, which is the key to enhance the RF fingerprint recognition. In this paper, we try to analyze the intrinsic characteristics of the components that influenced the signal by the transmitting source and derive a mathematical formula to describe the RF characteristics. We propose a method using dynamic wavelet transform and wavelet spectrum (DWTWS) to enhance RFF features. The performance of the proposed method was evaluated by experimental data. Using a support vector machine classifier, the recognition accuracy is 99.6% for 10 individuals at a signal-to-noise ratio (SNR) of 10 dB. In comparison with the dual-tree complex wavelet transform (DT-CWT) feature extraction method and the wavelet scattering transform method, the DWTWS method has increased the interclass distance of different individuals and enhanced the recognition accuracy. The DWTWS method is superior at low SNR, with performance improvements of 53.1% and 10.7% at 0 dB.","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"30 7","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/2023/4251265","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Because of the open property of information sharing in integrated sensing and communication, it is inevitable to face security problems such as user information being tampered, eavesdropped, and copied. Radio frequency (RF) individual identification technology is an important means to solve its security problems at present. Whether using machine learning methods or current deep learning-based target fingerprint identification, its performance is based on how well the radio frequency features (RFF) are extracted. Since the received signal is affected by various factors, we believe that we should first find the intrinsic features that can describe the properties of the target, which is the key to enhance the RF fingerprint recognition. In this paper, we try to analyze the intrinsic characteristics of the components that influenced the signal by the transmitting source and derive a mathematical formula to describe the RF characteristics. We propose a method using dynamic wavelet transform and wavelet spectrum (DWTWS) to enhance RFF features. The performance of the proposed method was evaluated by experimental data. Using a support vector machine classifier, the recognition accuracy is 99.6% for 10 individuals at a signal-to-noise ratio (SNR) of 10 dB. In comparison with the dual-tree complex wavelet transform (DT-CWT) feature extraction method and the wavelet scattering transform method, the DWTWS method has increased the interclass distance of different individuals and enhanced the recognition accuracy. The DWTWS method is superior at low SNR, with performance improvements of 53.1% and 10.7% at 0 dB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集成传感与通信中的射频信号特征提取
由于集成传感与通信中信息共享的开放性,不可避免地面临用户信息被篡改、窃听、复制等安全问题。射频(RF)个人识别技术是目前解决其安全问题的重要手段。无论是使用机器学习方法还是当前基于深度学习的目标指纹识别,其性能都取决于射频特征(RFF)的提取程度。由于接收到的信号受到各种因素的影响,我们认为首先要找到能够描述目标属性的内在特征,这是增强射频指纹识别的关键。在本文中,我们试图分析受发射源影响信号的元件的固有特性,并推导出描述射频特性的数学公式。提出了一种利用动态小波变换和小波谱(DWTWS)增强RFF特征的方法。实验数据验证了该方法的性能。使用支持向量机分类器,在信噪比为10 dB的情况下,对10个个体的识别准确率达到99.6%。与双树复小波变换(DT-CWT)特征提取方法和小波散射变换方法相比,DWTWS方法增加了不同个体的类间距离,提高了识别精度。DWTWS方法在低信噪比条件下性能较好,在0 dB条件下性能分别提高53.1%和10.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Signal Processing
IET Signal Processing 工程技术-工程:电子与电气
CiteScore
3.80
自引率
5.90%
发文量
83
审稿时长
9.5 months
期刊介绍: IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more. Topics covered by scope include, but are not limited to: advances in single and multi-dimensional filter design and implementation linear and nonlinear, fixed and adaptive digital filters and multirate filter banks statistical signal processing techniques and analysis classical, parametric and higher order spectral analysis signal transformation and compression techniques, including time-frequency analysis system modelling and adaptive identification techniques machine learning based approaches to signal processing Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques theory and application of blind and semi-blind signal separation techniques signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals direction-finding and beamforming techniques for audio and electromagnetic signals analysis techniques for biomedical signals baseband signal processing techniques for transmission and reception of communication signals signal processing techniques for data hiding and audio watermarking sparse signal processing and compressive sensing Special Issue Call for Papers: Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf
期刊最新文献
Human-Centered UAV–MAV Teaming in Adversarial Scenarios via Target-Aware Intention Prediction and Reinforcement Learning Att-U2Net: Using Attention to Enhance Semantic Representation for Salient Object Detection Deep Reinforcement Learning Explores EH-RIS for Spectrum-Efficient Drone Communication in 6G An Improved Lightweight YOLO Algorithm for Recognition of GPS Interference Signals in Civil Aviation Support Vector Machines Based Mutual Interference Mitigation for Millimeter-Wave Radars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1