Adaptive Acquisition and Visualization of Point Cloud Using Airborne LIDAR and Game Engine

Chengxuan Huang, Evan Brock, Dalei Wu, Yu Liang
{"title":"Adaptive Acquisition and Visualization of Point Cloud Using Airborne LIDAR and Game Engine","authors":"Chengxuan Huang, Evan Brock, Dalei Wu, Yu Liang","doi":"10.4018/ijmdem.332881","DOIUrl":null,"url":null,"abstract":"The development of digital twin for smart city applications requires real-time monitoring and mapping of urban environments. This work develops a framework of real-time urban mapping using an airborne light detection and ranging (LIDAR) agent and game engine. In order to improve the accuracy and efficiency of data acquisition and utilization, the framework is focused on the following aspects: (1) an optimal navigation strategy using Deep Q-Network (DQN) reinforcement learning, (2) multi-streamed game engines employed in visualizing data of urban environment and training the deep-learning-enabled data acquisition platform, (3) dynamic mesh used to formulate and analyze the captured point-cloud, and (4) a quantitative error analysis for points generated with our experimental aerial mapping platform, and an accuracy analysis of post-processing. Experimental results show that the proposed DQN-enabled navigation strategy, rendering algorithm, and post-processing could enable a game engine to efficiently generate a highly accurate digital twin of an urban environment.","PeriodicalId":445080,"journal":{"name":"International Journal of Multimedia Data Engineering and Management","volume":"49 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multimedia Data Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijmdem.332881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of digital twin for smart city applications requires real-time monitoring and mapping of urban environments. This work develops a framework of real-time urban mapping using an airborne light detection and ranging (LIDAR) agent and game engine. In order to improve the accuracy and efficiency of data acquisition and utilization, the framework is focused on the following aspects: (1) an optimal navigation strategy using Deep Q-Network (DQN) reinforcement learning, (2) multi-streamed game engines employed in visualizing data of urban environment and training the deep-learning-enabled data acquisition platform, (3) dynamic mesh used to formulate and analyze the captured point-cloud, and (4) a quantitative error analysis for points generated with our experimental aerial mapping platform, and an accuracy analysis of post-processing. Experimental results show that the proposed DQN-enabled navigation strategy, rendering algorithm, and post-processing could enable a game engine to efficiently generate a highly accurate digital twin of an urban environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机载激光雷达和游戏引擎的点云自适应采集与可视化
智能城市应用的数字孪生发展需要对城市环境进行实时监控和绘图。这项工作开发了一个使用机载光探测和测距(LIDAR)代理和游戏引擎的实时城市地图框架。为了提高数据采集和利用的准确性和效率,该框架主要关注以下几个方面:(1)基于Deep Q-Network (DQN)强化学习的最优导航策略;(2)采用多流游戏引擎对城市环境数据进行可视化并训练基于深度学习的数据采集平台;(3)采用动态网格对捕获的点云进行制定和分析;(4)对实验航测平台生成的点进行定量误差分析,并对后处理的精度进行分析。实验结果表明,所提出的基于dqn的导航策略、渲染算法和后处理能够使游戏引擎高效地生成高精度的城市环境数字孪生体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A-DisETrac Advanced Analytic Dashboard for Distributed Eye Tracking Comparison of Light Field and Conventional Near-Eye AR Displays in Virtual-Real Integration Efficiency Automation of Explainability Auditing for Image Recognition Adaptive Acquisition and Visualization of Point Cloud Using Airborne LIDAR and Game Engine iASSIST
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1