Sentiment Analysis of Indonesian TikTok Review Using LSTM and IndoBERTweet Algorithm

Jerry Cahyo Setiawan, Kemas M. Lhaksmana, Bunyamin Bunyamin
{"title":"Sentiment Analysis of Indonesian TikTok Review Using LSTM and IndoBERTweet Algorithm","authors":"Jerry Cahyo Setiawan, Kemas M. Lhaksmana, Bunyamin Bunyamin","doi":"10.29100/jipi.v8i3.3911","DOIUrl":null,"url":null,"abstract":"TikTok is currently the most popular app in the world and thus gets many reviews on the Google Play Store and other app marketplace platforms. These reviews are valuable user opinions that can be analyzed further for many purposes. Harnessing valuable analyses from these reviews can be obtained manually, which will be time-consuming and costly, or automatically with machine learning methods. This paper implements the latter with LSTM and IndoBERTweet, a derivative of BERT, using Indonesian vocabulary from Twitter post data. This research aims to determine the appropriate method to create a model that can automatically classify TikTok reviews into negative, neutral, and positive sentiments. The result demonstrates that IndoBERTweet outperforms the other, with an accuracy of 80%, whereas the LSTM accuracy is at 78%.","PeriodicalId":32696,"journal":{"name":"JIPI Jurnal IPA dan Pembelajaran IPA","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIPI Jurnal IPA dan Pembelajaran IPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29100/jipi.v8i3.3911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

TikTok is currently the most popular app in the world and thus gets many reviews on the Google Play Store and other app marketplace platforms. These reviews are valuable user opinions that can be analyzed further for many purposes. Harnessing valuable analyses from these reviews can be obtained manually, which will be time-consuming and costly, or automatically with machine learning methods. This paper implements the latter with LSTM and IndoBERTweet, a derivative of BERT, using Indonesian vocabulary from Twitter post data. This research aims to determine the appropriate method to create a model that can automatically classify TikTok reviews into negative, neutral, and positive sentiments. The result demonstrates that IndoBERTweet outperforms the other, with an accuracy of 80%, whereas the LSTM accuracy is at 78%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LSTM和IndoBERTweet算法的印尼语TikTok评论情感分析
TikTok目前是世界上最受欢迎的应用程序,因此在谷歌Play商店和其他应用程序市场平台上获得了许多评论。这些评论是有价值的用户意见,可以进一步分析用于许多目的。从这些评论中利用有价值的分析可以手动获得,这将是耗时和昂贵的,或者使用机器学习方法自动获得。本文使用来自Twitter帖子数据的印尼语词汇,利用LSTM和BERT的衍生工具IndoBERTweet实现了后者。本研究旨在确定合适的方法来创建一个模型,该模型可以自动将TikTok的评论分为负面、中性和积极情绪。结果表明,IndoBERTweet优于其他tweet,准确率为80%,而LSTM的准确率为78%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
25
审稿时长
12 weeks
期刊最新文献
The Eligibility of the Encyclopedia of Circulatory System Diseases and Disorders Based on Traditional Medicinal Plants for Hypertension as Learning Media Application of Problem Based Learning Assisted by Reward and Punishment to Improve Self-Regulation of Junior High School Students Application of Process Portofolio Assessment Based on Guided Inquiry Model in Improving Critical Thinking Skills and Learning Outcomes of Science Education Students Development of Chatbot Learning Media on Earth Rotation and Revolution Materials for Grade 6 Elementary School Students Analysis of Knowledge and Understanding of Regarding Waste Management in the Aie Dingin Landfill Area in Balai Gadang Koto Tangah District Padang City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1