Lightweight load-bearing heat dissipation multifunctional pomelo peel-inspired structures fabricated by laser powder bed fusion

IF 6.8 3区 医学 Q1 ENGINEERING, BIOMEDICAL International Journal of Bioprinting Pub Date : 2023-08-30 DOI:10.36922/ijb.1011
Linxuan Li, Dongdong Gu, He Liu, Han Zhang, Junhao Shan, Yijuan Zhang
{"title":"Lightweight load-bearing heat dissipation multifunctional pomelo peel-inspired structures fabricated by laser powder bed fusion","authors":"Linxuan Li, Dongdong Gu, He Liu, Han Zhang, Junhao Shan, Yijuan Zhang","doi":"10.36922/ijb.1011","DOIUrl":null,"url":null,"abstract":"   The heat dissipation structure used in modern airborne radar chassis not only requires lightweight, but also pursues better mechanical properties and heat dissipation performance. In this study, a stochastically porous pomelo peel-inspired gradient structure was fabricated by laser powder bed fusion using Al-Mg-Sc-Zr powder. This study focused on the formability, microstructure, mechanical properties, and heat dissipation performance of the biomimetic structure through experimental and finite element analysis approaches. The influence of volume fraction (VF) on structural mechanical properties, deformation modes, stress distribution, and heat dissipation performance was investigated. The results showed that the mechanical properties of the structure declined as the VFs decreased. The optimal mechanical performance was obtained at the VF of 45%, where the compressive strength, specific energy absorption (Ws), and specific compressive strength values were measured to be 63.47 MPa, 34.84 J/g, and 142.16 MPa/(g·cm-3), respectively. Moreover, the Ws of the structures was higher than that of the reported aluminum alloy structures at the same VF. The biomimetic structure exhibited improved heat dissipation performance as the VFs decreased, with Reynolds number ranging from 2700 to 13,400. The structure of 30% VF with a remarkable heat transfer efficiency index of 1.86 displayed the best heat dissipation performance. In addition, compared with the traditional fin structures, the bionic structure possessed better thermal resistance, heat transfer efficiency index, and temperature uniformity at the same VF. This study demonstrated notable potential of pomelo peel-inspired design for lightweight load-bearing applications capable of heat-dissipating performance, providing a novel perspective for design and fabrication of versatile structures in the aviation field.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"10 1","pages":"0"},"PeriodicalIF":6.8000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36922/ijb.1011","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

   The heat dissipation structure used in modern airborne radar chassis not only requires lightweight, but also pursues better mechanical properties and heat dissipation performance. In this study, a stochastically porous pomelo peel-inspired gradient structure was fabricated by laser powder bed fusion using Al-Mg-Sc-Zr powder. This study focused on the formability, microstructure, mechanical properties, and heat dissipation performance of the biomimetic structure through experimental and finite element analysis approaches. The influence of volume fraction (VF) on structural mechanical properties, deformation modes, stress distribution, and heat dissipation performance was investigated. The results showed that the mechanical properties of the structure declined as the VFs decreased. The optimal mechanical performance was obtained at the VF of 45%, where the compressive strength, specific energy absorption (Ws), and specific compressive strength values were measured to be 63.47 MPa, 34.84 J/g, and 142.16 MPa/(g·cm-3), respectively. Moreover, the Ws of the structures was higher than that of the reported aluminum alloy structures at the same VF. The biomimetic structure exhibited improved heat dissipation performance as the VFs decreased, with Reynolds number ranging from 2700 to 13,400. The structure of 30% VF with a remarkable heat transfer efficiency index of 1.86 displayed the best heat dissipation performance. In addition, compared with the traditional fin structures, the bionic structure possessed better thermal resistance, heat transfer efficiency index, and temperature uniformity at the same VF. This study demonstrated notable potential of pomelo peel-inspired design for lightweight load-bearing applications capable of heat-dissipating performance, providing a novel perspective for design and fabrication of versatile structures in the aviation field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用激光粉末床熔接技术制备的轻质、承重、散热、多功能柚子皮结构
,,现代机载雷达底盘采用的散热结构不仅要求轻量化,而且追求更好的力学性能和散热性能。本文以Al-Mg-Sc-Zr粉末为材料,采用激光粉末床熔接法制备了柚子皮激发的随机多孔梯度结构。本研究主要通过实验和有限元分析方法对仿生结构的成形性、微观结构、力学性能和散热性能进行了研究。研究了体积分数(VF)对结构力学性能、变形模式、应力分布和散热性能的影响。结果表明,随着VFs的减小,结构的力学性能有所下降。当VF为45%时,材料的抗压强度、比能吸收(Ws)和比抗压强度分别为63.47 MPa、34.84 J/g和142.16 MPa/(g·cm-3),力学性能最佳。在相同的VF下,该结构的w值高于已有报道的铝合金结构。随着VFs的减小,仿生结构的散热性能得到改善,其雷诺数在2700 ~ 13400之间。30% VF的结构散热性能最好,传热效率指数为1.86。此外,与传统翅片结构相比,仿生结构具有更好的热阻、换热效率指数和相同VF下的温度均匀性。这项研究展示了柚子皮启发设计在具有散热性能的轻质承重应用中的显著潜力,为航空领域多用途结构的设计和制造提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
4.80%
发文量
81
期刊介绍: The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.
期刊最新文献
Additive-manufactured synthetic bone model with biomimicking tunable mechanical properties for evaluation of medical implants Designing a 3D-printed medical implant with mechanically macrostructural topology and microbionic lattices: A novel wedge-shaped spacer for high tibial osteotomy and biomechanical study PBF-LB fabrication of microgrooves for induction of osteogenic differentiation of human mesenchymal stem cells Building a degradable scaffold with 3D printing using Masquelet technique to promote osteoblast differentiation and angiogenesis in chronic tibial osteomyelitis with bone defects Design of biomedical gradient porous scaffold via a minimal surface dual-unit continuous transition connection strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1