Deception-based Method for Ransomware Detection

TaeGuen Kim
{"title":"Deception-based Method for Ransomware Detection","authors":"TaeGuen Kim","doi":"10.58346/jisis.2023.i3.012","DOIUrl":null,"url":null,"abstract":"Ransomware is a rapidly growing malware threat that encrypts a user's files and demands a ransom for the decryption key. It has caused significant financial harm worldwide and is difficult to detect, especially when it's a new, unknown zero-day ransomware. Most commercial antivirus software relies on signature-based detection, which can be slow and inadequate for swiftly identifying suspicious programs. To tackle these challenges, this paper presents a ransomware protection method utilizing decoy files. Our deception-based protection method enhances ransomware detection with a fair decoy deployment strategy. Our method offers the advantage of robustly detecting ransomware compared to existing deception-based methods. Furthermore, it can effectively address ransomware that employs random access attacks, thereby bypassing deception-based detection techniques. In the evaluation, we provide a comprehensive analysis of our experimental results to vividly demonstrate the efficacy of our proposed method. Specifically, we introduce a random-access attack scenario that could potentially circumvent deception-based protection mechanisms. Furthermore, we assess the resilience of our method against such random-access attacks.","PeriodicalId":36718,"journal":{"name":"Journal of Internet Services and Information Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Services and Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58346/jisis.2023.i3.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Ransomware is a rapidly growing malware threat that encrypts a user's files and demands a ransom for the decryption key. It has caused significant financial harm worldwide and is difficult to detect, especially when it's a new, unknown zero-day ransomware. Most commercial antivirus software relies on signature-based detection, which can be slow and inadequate for swiftly identifying suspicious programs. To tackle these challenges, this paper presents a ransomware protection method utilizing decoy files. Our deception-based protection method enhances ransomware detection with a fair decoy deployment strategy. Our method offers the advantage of robustly detecting ransomware compared to existing deception-based methods. Furthermore, it can effectively address ransomware that employs random access attacks, thereby bypassing deception-based detection techniques. In the evaluation, we provide a comprehensive analysis of our experimental results to vividly demonstrate the efficacy of our proposed method. Specifically, we introduce a random-access attack scenario that could potentially circumvent deception-based protection mechanisms. Furthermore, we assess the resilience of our method against such random-access attacks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于欺骗的勒索软件检测方法
勒索软件是一种快速增长的恶意软件威胁,它对用户的文件进行加密,并要求支付赎金以获得解密密钥。它在全球范围内造成了重大的经济损失,而且很难被发现,尤其是当它是一种新的、未知的零日勒索软件时。大多数商业杀毒软件依赖于基于签名的检测,这种检测速度很慢,无法快速识别可疑程序。为了解决这些问题,本文提出了一种利用诱骗文件的勒索软件保护方法。我们的基于欺骗的保护方法通过公平的诱饵部署策略增强了勒索软件的检测。与现有的基于欺骗的方法相比,我们的方法具有鲁棒性检测勒索软件的优势。此外,它可以有效地解决使用随机访问攻击的勒索软件,从而绕过基于欺骗的检测技术。在评估中,我们对我们的实验结果进行了全面的分析,生动地展示了我们提出的方法的有效性。具体来说,我们引入了一个随机访问攻击场景,可以潜在地绕过基于欺骗的保护机制。此外,我们评估了我们的方法对这种随机访问攻击的弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Internet Services and Information Security
Journal of Internet Services and Information Security Computer Science-Computer Science (miscellaneous)
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Evaluating the Effectiveness of a Gan Fingerprint Removal Approach in Fooling Deepfake Face Detection CSA-Forecaster: Stacked Model for Forecasting Child Sexual Abuse A Nonredundant SVD-based Precoding Matrix for Blind Channel Estimation in CP-OFDM Systems Over Channels with Memory An Intelligent Health Surveillance System: Predictive Modeling of Cardiovascular Parameters through Machine Learning Algorithms Using LoRa Communication and Internet of Medical Things (IoMT) Identifying Large Young Hacker Concentration in Indonesia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1