{"title":"Convex economic model predictive control for blade loads mitigation on wind turbines","authors":"Atindriyo Kusumo Pamososuryo, Yichao Liu, Tobias Gybel Hovgaard, Riccardo Ferrari, Jan‐Willem van Wingerden","doi":"10.1002/we.2869","DOIUrl":null,"url":null,"abstract":"Abstract Economic model predictive control (EMPC) has received increasing attention in the wind energy community due to its ability to trade‐off economic objectives with ease. However, for wind turbine applications, inherent nonlinearities, such as from aerodynamics, pose difficulties in attaining a convex optimal control problem (OCP), by which real‐time deployment is not only possible but also a globally optimal solution is guaranteed. A variable transformation can be utilized to obtain a convex OCP, where nominal variables, such as rotational speed, pitch angle, and torque, are exchanged with an alternative set in terms of power and energy. The ensuing convex EMPC (CEMPC) possesses linear dynamics, convex constraints, and concave economic objectives and has been successfully employed to address power control and tower fatigue alleviation. This work focuses on extending the blade loads mitigation aspect of the CEMPC framework by exploiting its individual pitch control (IPC) capabilities, resulting in a novel CEMPC‐IPC technique. This extension is made possible by reformulating static blade and rotor moments in terms of individual blade aerodynamic powers and rotational kinetic energy of the drivetrain. The effectiveness of the proposed method is showcased in a mid‐fidelity wind turbine simulation environment in various wind cases, in which comparisons with a basic CEMPC without load mitigation capability and a baseline IPC are made.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":"21 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/we.2869","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Economic model predictive control (EMPC) has received increasing attention in the wind energy community due to its ability to trade‐off economic objectives with ease. However, for wind turbine applications, inherent nonlinearities, such as from aerodynamics, pose difficulties in attaining a convex optimal control problem (OCP), by which real‐time deployment is not only possible but also a globally optimal solution is guaranteed. A variable transformation can be utilized to obtain a convex OCP, where nominal variables, such as rotational speed, pitch angle, and torque, are exchanged with an alternative set in terms of power and energy. The ensuing convex EMPC (CEMPC) possesses linear dynamics, convex constraints, and concave economic objectives and has been successfully employed to address power control and tower fatigue alleviation. This work focuses on extending the blade loads mitigation aspect of the CEMPC framework by exploiting its individual pitch control (IPC) capabilities, resulting in a novel CEMPC‐IPC technique. This extension is made possible by reformulating static blade and rotor moments in terms of individual blade aerodynamic powers and rotational kinetic energy of the drivetrain. The effectiveness of the proposed method is showcased in a mid‐fidelity wind turbine simulation environment in various wind cases, in which comparisons with a basic CEMPC without load mitigation capability and a baseline IPC are made.
期刊介绍:
Wind Energy offers a major forum for the reporting of advances in this rapidly developing technology with the goal of realising the world-wide potential to harness clean energy from land-based and offshore wind. The journal aims to reach all those with an interest in this field from academic research, industrial development through to applications, including individual wind turbines and components, wind farms and integration of wind power plants. Contributions across the spectrum of scientific and engineering disciplines concerned with the advancement of wind power capture, conversion, integration and utilisation technologies are essential features of the journal.