{"title":"Measurement of molecular alignment with deep learning-based M-XFROG technique","authors":"Wanchen Tao, Siqi Sun, Lixin He, Yanqing He, Jianchang Hu, Yu Deng, Chengqing Xu, Pengfei Lan, Peixiang Lu","doi":"10.3788/col202321.120021","DOIUrl":null,"url":null,"abstract":"We demonstrate a deep-learning neural network (DNN) method for the measurement of molecular alignment by using the molecular-alignment-based cross-correlation polarization-gating frequency resolved optical gating (M-XFROG) technique. Our network has the capacity for direct measurement of molecular alignment from the FROG traces. In a proof-of-principle experiment, we have demonstrated our method in O2 molecules. With our method, the molecular alignment factor ⟨cos2 θ⟩(t) of O2, impulsively excited by a pump pulse, was directly reconstructed. The accuracy and validity of the reconstruction have been verified by comparison with the simulations based on experimental parameters.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"38 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Optics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/col202321.120021","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate a deep-learning neural network (DNN) method for the measurement of molecular alignment by using the molecular-alignment-based cross-correlation polarization-gating frequency resolved optical gating (M-XFROG) technique. Our network has the capacity for direct measurement of molecular alignment from the FROG traces. In a proof-of-principle experiment, we have demonstrated our method in O2 molecules. With our method, the molecular alignment factor ⟨cos2 θ⟩(t) of O2, impulsively excited by a pump pulse, was directly reconstructed. The accuracy and validity of the reconstruction have been verified by comparison with the simulations based on experimental parameters.
期刊介绍:
Chinese Optics Letters (COL) is an international journal aimed at the rapid dissemination of latest, important discoveries and inventions in all branches of optical science and technology. It is considered to be one of the most important journals in optics in China. It is collected by The Optical Society (OSA) Publishing Digital Library and also indexed by Science Citation Index (SCI), Engineering Index (EI), etc.
COL is distinguished by its short review period (~30 days) and publication period (~100 days).
With its debut in January 2003, COL is published monthly by Chinese Laser Press, and distributed by OSA outside of Chinese Mainland.