Analytical Model Development for Rotors Hovering Above Heaving Surfaces

IF 1.4 4区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of the American Helicopter Society Pub Date : 2023-10-01 DOI:10.4050/jahs.68.042007
Joseph Milluzzo, John K. Tritschler, Scott Davids
{"title":"Analytical Model Development for Rotors Hovering Above Heaving Surfaces","authors":"Joseph Milluzzo, John K. Tritschler, Scott Davids","doi":"10.4050/jahs.68.042007","DOIUrl":null,"url":null,"abstract":"A potential flow model was developed for rotors hovering in-ground-effect above a heaving surface using a similar methodology to classical, analytical, static ground effect models. Experimental performance measurements for rotors hovering above a surface undergoing single degree-of-freedom heaving motion were used for model validation, and potential mission trends were generated for a representative naval helicopter. Unlike prior empirical models, the current model was able to capture the effect of rotor hub height as well as ground motion parameters. A new thrust ratio was proposed that compared the thrust produced in-ground-effect above a heaving surface to that produced above a static surface. Better agreement was found to occur at the higher collective pitch settings and hub heights, with the model predicting the classical thrust ratio within 5% of the measured value for approximately 75% of the test points. The thrust ratio relative to a static surface was found to produce better agreement, and approximately 80% of the experimental tests points were predicted within 5% of the measured value.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"198 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4050/jahs.68.042007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

A potential flow model was developed for rotors hovering in-ground-effect above a heaving surface using a similar methodology to classical, analytical, static ground effect models. Experimental performance measurements for rotors hovering above a surface undergoing single degree-of-freedom heaving motion were used for model validation, and potential mission trends were generated for a representative naval helicopter. Unlike prior empirical models, the current model was able to capture the effect of rotor hub height as well as ground motion parameters. A new thrust ratio was proposed that compared the thrust produced in-ground-effect above a heaving surface to that produced above a static surface. Better agreement was found to occur at the higher collective pitch settings and hub heights, with the model predicting the classical thrust ratio within 5% of the measured value for approximately 75% of the test points. The thrust ratio relative to a static surface was found to produce better agreement, and approximately 80% of the experimental tests points were predicted within 5% of the measured value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
旋翼悬停升沉面分析模型的建立
采用与经典的、解析的、静态的地面效应模型相似的方法,建立了旋翼悬停在地面效应上的势流模型。利用旋翼在水面悬停进行单自由度升沉运动的实验性能测量对模型进行了验证,并对具有代表性的海军直升机产生了潜在的任务趋势。与以往的经验模型不同,目前的模型能够捕捉转子轮毂高度以及地面运动参数的影响。提出了一种新的推力比,将升沉表面上产生的地效推力与静态表面上产生的地效推力进行比较。在较高的集体螺距设置和轮毂高度下,模型预测的经典推力比在大约75%的测试点的测量值的5%以内。相对于静态表面的推力比被发现产生了更好的一致性,并且大约80%的实验测试点被预测在实测值的5%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the American Helicopter Society
Journal of the American Helicopter Society 工程技术-工程:宇航
CiteScore
4.10
自引率
33.30%
发文量
36
审稿时长
>12 weeks
期刊介绍: The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online. The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine
期刊最新文献
Dynamic Load Analysis of Motion Converter Ball Bearings in a Pericyclic Transmission Analytical Model Development for Rotors Hovering Above Heaving Surfaces Deep Learning Based Obstacle Awareness from Airborne Optical Sensors Observers for Robust Rotor State Estimation Performance and Loads of a Wing-Offset Compound Helicopter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1