Martin M. Müller, Armin Weiss, Johannes N. Braukmann
{"title":"Dynamic Stall Investigation on a Rotating Semielastic Double-swept Rotor Blade at the Rotor Test Facility Göttingen","authors":"Martin M. Müller, Armin Weiss, Johannes N. Braukmann","doi":"10.4050/jahs.68.022007","DOIUrl":null,"url":null,"abstract":"Experimental investigations of three-dimensional dynamic stall on a four-bladed Mach-scaled semielastic rotor with an innovative double-swept rotor blade planform are presented. The study focuses on the coupling between the aeroelastic behavior of the blade and the underlying aerodynamics. Blade bending moment and flap displacement measurements were conducted using strain gauges and optical tracking of blade tip markers. The aerodynamic behavior was characterized by means of unsteady surface pressure measurements using unsteady pressure-sensitive paint (iPSP) across the outer 65% of the blade span and fast response pressure transducers at discrete locations. Different cyclic-pitch settings were investigated at a rotation frequency of f rotor = 23.6 Hz that corresponds to blade tip Mach and Reynolds numbers of M tip = 0.282– 0.285 and Re tip = 5.84-5.95 ×10 5 . The findings reveal a detailed insight into the nonlinear behavior in the flap movement during downstroke. iPSP and pressure transducer data indicate that this nonlinear flap behavior is caused by a radially phase-shifted dynamic stall process at the forward and backward swept part of the blade.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"11 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4050/jahs.68.022007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Experimental investigations of three-dimensional dynamic stall on a four-bladed Mach-scaled semielastic rotor with an innovative double-swept rotor blade planform are presented. The study focuses on the coupling between the aeroelastic behavior of the blade and the underlying aerodynamics. Blade bending moment and flap displacement measurements were conducted using strain gauges and optical tracking of blade tip markers. The aerodynamic behavior was characterized by means of unsteady surface pressure measurements using unsteady pressure-sensitive paint (iPSP) across the outer 65% of the blade span and fast response pressure transducers at discrete locations. Different cyclic-pitch settings were investigated at a rotation frequency of f rotor = 23.6 Hz that corresponds to blade tip Mach and Reynolds numbers of M tip = 0.282– 0.285 and Re tip = 5.84-5.95 ×10 5 . The findings reveal a detailed insight into the nonlinear behavior in the flap movement during downstroke. iPSP and pressure transducer data indicate that this nonlinear flap behavior is caused by a radially phase-shifted dynamic stall process at the forward and backward swept part of the blade.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine