Melting mechanisms in corotating twin-screw extrusion: a critical review

IF 1.1 4区 工程技术 Q4 ENGINEERING, CHEMICAL International Polymer Processing Pub Date : 2023-10-27 DOI:10.1515/ipp-2023-4414
Bruno Vergnes
{"title":"Melting mechanisms in corotating twin-screw extrusion: a critical review","authors":"Bruno Vergnes","doi":"10.1515/ipp-2023-4414","DOIUrl":null,"url":null,"abstract":"Abstract Corotating twin-screw extrusion is widely used for many applications in mixing and compounding. While the flow conditions in the different screw elements are now well known and accurately modeled, the melting mechanisms, i.e. the transition between solid and molten polymer, are much less understood and are still the subject of debates. In this review paper, experimental observations from the literature are first presented and commented, followed by the proposed theoretical approaches. It will be concluded that a satisfactory model considering the different mechanisms involved in the melting step has yet to be elaborated, unlike what exists for the single screw extrusion.","PeriodicalId":14410,"journal":{"name":"International Polymer Processing","volume":"12 5","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Polymer Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ipp-2023-4414","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Corotating twin-screw extrusion is widely used for many applications in mixing and compounding. While the flow conditions in the different screw elements are now well known and accurately modeled, the melting mechanisms, i.e. the transition between solid and molten polymer, are much less understood and are still the subject of debates. In this review paper, experimental observations from the literature are first presented and commented, followed by the proposed theoretical approaches. It will be concluded that a satisfactory model considering the different mechanisms involved in the melting step has yet to be elaborated, unlike what exists for the single screw extrusion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
旋转双螺杆挤压的熔化机制:综述
摘要双螺杆同向挤出是一种广泛应用于混合和复合的挤出设备。虽然不同螺杆元件的流动条件现在是众所周知的,并精确地建模,但熔融机制,即固体和熔融聚合物之间的转变,知之甚少,仍然是争论的主题。在这篇综述文章中,首先介绍和评论了文献中的实验观察结果,然后提出了理论方法。结论是,考虑到熔化步骤中涉及的不同机制的令人满意的模型尚未得到详细阐述,不像单螺杆挤出存在的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Polymer Processing
International Polymer Processing 工程技术-高分子科学
CiteScore
2.20
自引率
7.70%
发文量
62
审稿时长
6 months
期刊介绍: International Polymer Processing offers original research contributions, invited review papers and recent technological developments in processing thermoplastics, thermosets, elastomers and fibers as well as polymer reaction engineering. For more than 25 years International Polymer Processing, the journal of the Polymer Processing Society, provides strictly peer-reviewed, high-quality articles and rapid communications from the leading experts around the world.
期刊最新文献
Investigation of mechanical and tribological performance of wood dust reinforced epoxy composite under dry, wet and heated contact condition Preparation of PVDF/PVA composite films with micropatterned structures on light-cured 3D printed molds for hydrophilic modification of PVDF Predicting part quality early during an injection molding cycle Optimizing laser-based micro-cutting for PMMA microfluidic device fabrication: thermal analysis and parameter optimization Experimental investigation on mechanical and tribological analysis of pineapple leaf (Ananas comosus) and sisal (Agave sisalana) fibers reinforced hybrid epoxy composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1