Lídia Escoda, Josep Piqué, Ladislav Paule, Kévin Foulché, Emmanuel Menoni, Jose Castresana
{"title":"Genomic analysis of geographical structure and diversity in the capercaillie (Tetrao urogallus)","authors":"Lídia Escoda, Josep Piqué, Ladislav Paule, Kévin Foulché, Emmanuel Menoni, Jose Castresana","doi":"10.1007/s10592-023-01567-6","DOIUrl":null,"url":null,"abstract":"Abstract The capercaillie is widespread throughout the boreal forests of northern Eurasia, but faces serious conservation challenges in the southernmost mountain ranges, where the populations are fragmented and some are critically endangered. To develop effective conservation strategies for these populations, it is essential to have information on both their genetic diversity and the genetic structure of the species. In this work, we used a reduced representation (ddRAD) genomic sequencing technique to analyze the genetic structure of the capercaillie across its European range and to assess the inbreeding levels in some of the most threatened populations. Our population structure analysis suggested the existence of two evolutionarily significant units, one formed by the two populations from the Iberian Peninsula and the other by the populations from the rest of Europe. Genetic diversity showed a significant decrease in the Iberian populations with respect to the other European populations. An isolation-with-migration model supported these results and allowed us to estimate the parameters of the population tree. The inbreeding coefficients estimated for the Iberian capercaillies showed relatively low levels in the Pyrenees. However, some individuals with very high inbreeding values were detected in the Cantabrian Mountains, suggesting that some of its subpopulations are substantially isolated. The population structure results and the genomic monitoring method we used to assess inbreeding levels may be crucial for the conservation and recovery of the most endangered capercaillie populations.","PeriodicalId":55212,"journal":{"name":"Conservation Genetics","volume":"27 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10592-023-01567-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The capercaillie is widespread throughout the boreal forests of northern Eurasia, but faces serious conservation challenges in the southernmost mountain ranges, where the populations are fragmented and some are critically endangered. To develop effective conservation strategies for these populations, it is essential to have information on both their genetic diversity and the genetic structure of the species. In this work, we used a reduced representation (ddRAD) genomic sequencing technique to analyze the genetic structure of the capercaillie across its European range and to assess the inbreeding levels in some of the most threatened populations. Our population structure analysis suggested the existence of two evolutionarily significant units, one formed by the two populations from the Iberian Peninsula and the other by the populations from the rest of Europe. Genetic diversity showed a significant decrease in the Iberian populations with respect to the other European populations. An isolation-with-migration model supported these results and allowed us to estimate the parameters of the population tree. The inbreeding coefficients estimated for the Iberian capercaillies showed relatively low levels in the Pyrenees. However, some individuals with very high inbreeding values were detected in the Cantabrian Mountains, suggesting that some of its subpopulations are substantially isolated. The population structure results and the genomic monitoring method we used to assess inbreeding levels may be crucial for the conservation and recovery of the most endangered capercaillie populations.
期刊介绍:
Conservation Genetics promotes the conservation of biodiversity by providing a forum for data and ideas, aiding the further development of this area of study. Contributions include work from the disciplines of population genetics, molecular ecology, molecular biology, evolutionary biology, systematics, forensics, and others. The focus is on genetic and evolutionary applications to problems of conservation, reflecting the diversity of concerns relevant to conservation biology. Studies are based on up-to-date technologies, including genomic methodologies. The journal publishes original research papers, short communications, review papers and perspectives.