Martha S. Gilmore, M. Darby Dyar, Nils Mueller, Jérémy Brossier, Alison R. Santos, Mikhail Ivanov, Richard Ghail, Justin Filiberto, Jörn Helbert
{"title":"Mineralogy of the Venus Surface","authors":"Martha S. Gilmore, M. Darby Dyar, Nils Mueller, Jérémy Brossier, Alison R. Santos, Mikhail Ivanov, Richard Ghail, Justin Filiberto, Jörn Helbert","doi":"10.1007/s11214-023-00988-6","DOIUrl":null,"url":null,"abstract":"Abstract Surface mineralogy records the primary composition, climate history and the geochemical cycling between the surface and atmosphere. We have not yet directly measured mineralogy on the Venus surface in situ, but a variety of independent investigations yield a basic understanding of surface composition and weathering reactions in the present era where rocks react under a supercritical atmosphere dominated by CO 2 , N 2 and SO 2 at ∼460 °C and 92 bars. The primary composition of the volcanic plains that cover ∼80% of the surface is inferred to be basaltic, as measured by the 7 Venera and Vega landers and consistent with morphology. These landers also recorded elevated SO 3 values, low rock densities and spectral signatures of hematite consistent with chemical weathering under an oxidizing environment. Thermodynamic modeling and laboratory experiments under present day atmospheric conditions predict and demonstrate reactions where Fe, Ca, Na in rocks react primarily with S species to form sulfates, sulfides and oxides. Variations in surface emissivity at ∼1 μm detected by the VIRTIS instrument on the Venus Express orbiter are spatially correlated to geologic terrains. Laboratory measurements of the near-infrared (NIR) emissivity of geologic materials at Venus surface temperatures confirms theoretical predictions that 1 μm emissivity is directly related to Fe 2+ content in minerals. These data reveal regions of high emissivity that may indicate unweathered and recently erupted basalts and low emissivity associated with tessera terrain that may indicate felsic materials formed during a more clement era. Magellan radar emissivity also constrain mineralogy as this parameter is inversely related to the type and volume of high dielectric minerals, likely to have formed due to surface/atmosphere reactions. The observation of both viscous and low viscosity volcanic flows in Magellan images may also be related to composition. The global NIR emissivity and high-resolution radar and topography collected by the VERITAS, EnVision and DAVINCI missions will provide a revolutionary advancement of these methods and our understanding of Venus mineralogy. Critically, these datasets must be supported with both laboratory experiments to constrain the style and rate weathering reactions and laboratory measurements of their NIR emissivity and radar characteristics at Venus conditions.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11214-023-00988-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Surface mineralogy records the primary composition, climate history and the geochemical cycling between the surface and atmosphere. We have not yet directly measured mineralogy on the Venus surface in situ, but a variety of independent investigations yield a basic understanding of surface composition and weathering reactions in the present era where rocks react under a supercritical atmosphere dominated by CO 2 , N 2 and SO 2 at ∼460 °C and 92 bars. The primary composition of the volcanic plains that cover ∼80% of the surface is inferred to be basaltic, as measured by the 7 Venera and Vega landers and consistent with morphology. These landers also recorded elevated SO 3 values, low rock densities and spectral signatures of hematite consistent with chemical weathering under an oxidizing environment. Thermodynamic modeling and laboratory experiments under present day atmospheric conditions predict and demonstrate reactions where Fe, Ca, Na in rocks react primarily with S species to form sulfates, sulfides and oxides. Variations in surface emissivity at ∼1 μm detected by the VIRTIS instrument on the Venus Express orbiter are spatially correlated to geologic terrains. Laboratory measurements of the near-infrared (NIR) emissivity of geologic materials at Venus surface temperatures confirms theoretical predictions that 1 μm emissivity is directly related to Fe 2+ content in minerals. These data reveal regions of high emissivity that may indicate unweathered and recently erupted basalts and low emissivity associated with tessera terrain that may indicate felsic materials formed during a more clement era. Magellan radar emissivity also constrain mineralogy as this parameter is inversely related to the type and volume of high dielectric minerals, likely to have formed due to surface/atmosphere reactions. The observation of both viscous and low viscosity volcanic flows in Magellan images may also be related to composition. The global NIR emissivity and high-resolution radar and topography collected by the VERITAS, EnVision and DAVINCI missions will provide a revolutionary advancement of these methods and our understanding of Venus mineralogy. Critically, these datasets must be supported with both laboratory experiments to constrain the style and rate weathering reactions and laboratory measurements of their NIR emissivity and radar characteristics at Venus conditions.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.