Water level prediction of Liuxihe Reservoir based on improved long short-term memory neural network

Youming Li, Jia Qu, Haosen Zhang, Yan Long, Shu Li
{"title":"Water level prediction of Liuxihe Reservoir based on improved long short-term memory neural network","authors":"Youming Li, Jia Qu, Haosen Zhang, Yan Long, Shu Li","doi":"10.2166/ws.2023.282","DOIUrl":null,"url":null,"abstract":"Abstract To meet the demand of accurate water level prediction of the reservoir in Liuxihe River Basin, this paper proposes an improved long short-term memory (LSTM) neural network based on the Bayesian optimization algorithm and wavelet decomposition coupling. Based on the improved model, the water levels of Liuxihe Reservoir and Huanglongdai Reservoir are simulated and predicted by the 1 h prediction length, and the prediction accuracy of the improved model is verified separately by the 3, 6 and 12 h prediction lengths. The results show that: first, Bayesian optimization coupling can significantly reduce the average absolute error and root mean square error of the model and improve the overall prediction accuracy, but this algorithm is insufficient in the optimization of model extremum; Wavelet decomposition coupling can significantly reduce the outliers in model prediction and improve the accuracy of extremum, but it plays relatively weaker role in the overall optimization of the model. Second, by the prediction lengths of 1, 3, 6 and 12 h, the improved model based on the LSTM neural network and coupled with Bayesian optimization and wavelet decomposition is superior to Bayesian optimization and wavelet decomposition coupling model in overall prediction accuracy and prediction accuracy of extremum.","PeriodicalId":23573,"journal":{"name":"Water Science & Technology: Water Supply","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology: Water Supply","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract To meet the demand of accurate water level prediction of the reservoir in Liuxihe River Basin, this paper proposes an improved long short-term memory (LSTM) neural network based on the Bayesian optimization algorithm and wavelet decomposition coupling. Based on the improved model, the water levels of Liuxihe Reservoir and Huanglongdai Reservoir are simulated and predicted by the 1 h prediction length, and the prediction accuracy of the improved model is verified separately by the 3, 6 and 12 h prediction lengths. The results show that: first, Bayesian optimization coupling can significantly reduce the average absolute error and root mean square error of the model and improve the overall prediction accuracy, but this algorithm is insufficient in the optimization of model extremum; Wavelet decomposition coupling can significantly reduce the outliers in model prediction and improve the accuracy of extremum, but it plays relatively weaker role in the overall optimization of the model. Second, by the prediction lengths of 1, 3, 6 and 12 h, the improved model based on the LSTM neural network and coupled with Bayesian optimization and wavelet decomposition is superior to Bayesian optimization and wavelet decomposition coupling model in overall prediction accuracy and prediction accuracy of extremum.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进型长短期记忆神经网络的柳溪河水库水位预测
摘要为满足流溪河流域水库水位准确预测的需求,提出了一种基于贝叶斯优化算法和小波分解耦合的改进型长短期记忆(LSTM)神经网络。以改进模型为基础,以1 h的预测长度对柳溪河和黄龙带水库的水位进行了模拟预测,并分别以3、6、12 h的预测长度对改进模型的预测精度进行了验证。结果表明:第一,贝叶斯优化耦合可以显著降低模型的平均绝对误差和均方根误差,提高整体预测精度,但该算法在模型极值优化方面存在不足;小波分解耦合可以显著减少模型预测中的异常值,提高极值的精度,但对模型的整体优化作用相对较弱。其次,在预测长度为1、3、6和12 h时,基于LSTM神经网络并结合贝叶斯优化和小波分解的改进模型在整体预测精度和极值预测精度上均优于贝叶斯优化和小波分解耦合模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing an optimal plan to improve irrigation efficiency using a risk-based central force algorithm Disinfection performance and synthesis conditions of the EGCG–Cu complex Selection of Real-Coded Genetic Algorithm parameters in solving simulation–optimization problems for the design of water distribution networks Evaluation of the yield and photosynthetic parameters of corn by some amendatory materials under deficit irrigation conditions Effects of applied nitrogen fertilizers and irrigation strategies on environmental protection and yield indices of winter wheat and barley in a Mediterranean climate region of Iran
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1