Management and Optimization Methods of Music Audio-Visual Archives Resources Based on Big Data

Hongyu Liu, Chenxi Lu
{"title":"Management and Optimization Methods of Music Audio-Visual Archives Resources Based on Big Data","authors":"Hongyu Liu, Chenxi Lu","doi":"10.4018/ijaci.332866","DOIUrl":null,"url":null,"abstract":"Protecting Oroqen folk songs is not only the only way to reproduce Chinese traditional music culture, but also the only way to rebuild its national spirit and enhance national cultural confidence. In view of the modernity problems of Oroqen folk songs in the current process of inheritance and protection, this paper puts forward the management and optimization methods of music audio-visual archives resources under the background of big data. This paper analyzes and discusses the resource management path of folk music audio-visual archives in Oroqen in the era of big data and designs a set of perfect digital music audio-visual archives resource management platform, which can not only facilitate the collection, storage, management, and utilization of paper files and electronic files in archives, but also optimize the retrieval algorithm of archives. The resource allocation algorithm based on Nash equilibrium solution is used to optimize it. The simulation results show that the proposed method reduces the information resource allocation time and improves the demand satisfaction.","PeriodicalId":51884,"journal":{"name":"International Journal of Ambient Computing and Intelligence","volume":"1 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ambient Computing and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijaci.332866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Protecting Oroqen folk songs is not only the only way to reproduce Chinese traditional music culture, but also the only way to rebuild its national spirit and enhance national cultural confidence. In view of the modernity problems of Oroqen folk songs in the current process of inheritance and protection, this paper puts forward the management and optimization methods of music audio-visual archives resources under the background of big data. This paper analyzes and discusses the resource management path of folk music audio-visual archives in Oroqen in the era of big data and designs a set of perfect digital music audio-visual archives resource management platform, which can not only facilitate the collection, storage, management, and utilization of paper files and electronic files in archives, but also optimize the retrieval algorithm of archives. The resource allocation algorithm based on Nash equilibrium solution is used to optimize it. The simulation results show that the proposed method reduces the information resource allocation time and improves the demand satisfaction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于大数据的音乐音像档案资源管理与优化方法
保护鄂伦春民歌是再现中国传统音乐文化的必由之路,也是重建鄂伦春民歌民族精神、增强民族文化自信的必由之路。针对鄂伦春民歌在当前传承保护过程中存在的现代性问题,提出了大数据背景下音乐音像档案资源的管理与优化方法。本文分析探讨了大数据时代鄂伦春地区民乐音像档案的资源管理路径,设计了一套完善的数字音乐音像档案资源管理平台,既方便了档案中纸质文件和电子文件的收集、存储、管理和利用,又优化了档案的检索算法。采用基于纳什均衡解的资源分配算法对其进行优化。仿真结果表明,该方法减少了信息资源分配时间,提高了需求满意度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
30
期刊最新文献
Analysis of Home Furnishing Marketing Based on Internet of Things in the Intelligent Environment Management of New Automatic Ticket Vending Machine System in Urban Rail Transit Threat Attribution and Reasoning for Industrial Control System Asset A Blockchain-Based Security Model for Cloud Accounting Data Management and Optimization Methods of Music Audio-Visual Archives Resources Based on Big Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1