Automatic Detection of Out-of-body Frames in Surgical Videos for Privacy Protection Using Self-supervised Learning and Minimal Labels

Ziheng Wang, Xi Liu, Conor Perreault, Anthony Jarc
{"title":"Automatic Detection of Out-of-body Frames in Surgical Videos for Privacy Protection Using Self-supervised Learning and Minimal Labels","authors":"Ziheng Wang, Xi Liu, Conor Perreault, Anthony Jarc","doi":"10.1142/s2424905x23500022","DOIUrl":null,"url":null,"abstract":"Endoscopic video recordings are widely used in minimally invasive robot-assisted surgery, but when the endoscope is outside the patient’s body, it can capture irrelevant segments that may contain sensitive information. To address this, we propose a framework that accurately detects out-of-body frames in surgical videos by leveraging self-supervision with minimal data labels. We use a massive amount of unlabeled endoscopic images to learn meaningful representations in a self-supervised manner. Our approach, which involves pre-training on an auxiliary task and fine-tuning with limited supervision, outperforms previous methods for detecting out-of-body frames in surgical videos captured from da Vinci X and Xi surgical systems. The average F1 scores range from [Formula: see text] to [Formula: see text]. Remarkably, using only [Formula: see text] of the training labels, our approach still maintains an average F1 score performance above 97, outperforming fully-supervised methods with [Formula: see text] fewer labels. These results demonstrate the potential of our framework to facilitate the safe handling of surgical video recordings and enhance data privacy protection in minimally invasive surgery.","PeriodicalId":73821,"journal":{"name":"Journal of medical robotics research","volume":"330 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical robotics research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424905x23500022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Endoscopic video recordings are widely used in minimally invasive robot-assisted surgery, but when the endoscope is outside the patient’s body, it can capture irrelevant segments that may contain sensitive information. To address this, we propose a framework that accurately detects out-of-body frames in surgical videos by leveraging self-supervision with minimal data labels. We use a massive amount of unlabeled endoscopic images to learn meaningful representations in a self-supervised manner. Our approach, which involves pre-training on an auxiliary task and fine-tuning with limited supervision, outperforms previous methods for detecting out-of-body frames in surgical videos captured from da Vinci X and Xi surgical systems. The average F1 scores range from [Formula: see text] to [Formula: see text]. Remarkably, using only [Formula: see text] of the training labels, our approach still maintains an average F1 score performance above 97, outperforming fully-supervised methods with [Formula: see text] fewer labels. These results demonstrate the potential of our framework to facilitate the safe handling of surgical video recordings and enhance data privacy protection in minimally invasive surgery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自监督学习和最小标签的手术视频出体帧隐私保护自动检测
内窥镜录像广泛应用于微创机器人辅助手术,但当内窥镜在患者体外时,它可能会捕捉到可能包含敏感信息的不相关片段。为了解决这个问题,我们提出了一个框架,通过利用最小数据标签的自我监督来准确检测手术视频中的体外帧。我们使用大量未标记的内窥镜图像以自我监督的方式学习有意义的表示。F1的平均分数从[公式:见文]到[公式:见文]不等。值得注意的是,仅使用[Formula: see text]的训练标签,我们的方法仍然保持了平均F1分数在97以上的表现,优于使用[Formula: see text]较少标签的完全监督方法。这些结果证明了我们的框架在促进手术视频记录的安全处理和加强微创手术数据隐私保护方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
Comparative Analysis of Peltier Devices and Flexible Heater Strips for Enhancing Bandwidth in Thermo-Active Soft Actuators Robotic Assistance and Haptic Feedback in Arthroscopic Procedures: Design and Preliminary Evaluation of a Two-Arm System Closed-form kinematics solutions for redundant medical robots with joint limits and singularity avoidance Development and preliminary evaluation of a robotic device for MRI-guided needle breast biopsy An MRI-Conditional Flexible Endoscopic Robot with a Hydraulic Tendon-Driven Actuation System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1