Performance Enhancement Technique for Position-based Alignment Algorithm in AUV’s Navigation

Gwonsoo Lee, Kihwan Choi, Phil-Yeob Lee, Ho-Sung Kim, Hansol Lee, Hyungjoo Kang, Jihong Lee
{"title":"Performance Enhancement Technique for Position-based Alignment Algorithm in AUV’s Navigation","authors":"Gwonsoo Lee, Kihwan Choi, Phil-Yeob Lee, Ho-Sung Kim, Hansol Lee, Hyungjoo Kang, Jihong Lee","doi":"10.5302/j.icros.2023.23.0081","DOIUrl":null,"url":null,"abstract":"This paper presents an improved approach for in-motion alignment based on position estimation to accurately determine the initial heading-angle of an autonomous underwater vehicle. The existing method for in-motion alignment is highly sensitive to errors from GPS reception and the localization algorithm, particularly in the vicinity of the starting point. Consequently, compensation values for the heading-angle obtained in the vicinity of the starting point are unreliable. To address this issue, this study analyzes the variance of the heading-angle compensation during the early stage of the alignment process, aiming to assess the reliability of the compensation value. By using variance as a criterion, the algorithm determines whether to continue the execution of the early stage in the alignment process. If the variance falls below a certain threshold, the algorithm calculates the correction value of the final heading-angle based on each correction value. The proposed algorithm is validated through practical experiments using sensor data collected from real-sea environments. The experimental results demonstrate an average improvement of 50.48% in localization performance with respect to the existing algorithm. Therefore, the proposed algorithm enhances the performance of the in-motion alignment algorithm.","PeriodicalId":38644,"journal":{"name":"Journal of Institute of Control, Robotics and Systems","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Institute of Control, Robotics and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5302/j.icros.2023.23.0081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an improved approach for in-motion alignment based on position estimation to accurately determine the initial heading-angle of an autonomous underwater vehicle. The existing method for in-motion alignment is highly sensitive to errors from GPS reception and the localization algorithm, particularly in the vicinity of the starting point. Consequently, compensation values for the heading-angle obtained in the vicinity of the starting point are unreliable. To address this issue, this study analyzes the variance of the heading-angle compensation during the early stage of the alignment process, aiming to assess the reliability of the compensation value. By using variance as a criterion, the algorithm determines whether to continue the execution of the early stage in the alignment process. If the variance falls below a certain threshold, the algorithm calculates the correction value of the final heading-angle based on each correction value. The proposed algorithm is validated through practical experiments using sensor data collected from real-sea environments. The experimental results demonstrate an average improvement of 50.48% in localization performance with respect to the existing algorithm. Therefore, the proposed algorithm enhances the performance of the in-motion alignment algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AUV导航中基于位置对齐算法的性能增强技术
提出了一种改进的基于位置估计的运动对准方法,以准确确定自主水下航行器的初始航向角。现有的运动对准方法对GPS接收和定位算法产生的误差高度敏感,特别是在起始点附近。因此,在起始点附近得到的航向角补偿值是不可靠的。为了解决这一问题,本研究分析了对准过程初期航向角补偿的方差,旨在评估补偿值的可靠性。该算法以方差为准则,确定是否继续执行对齐过程的早期阶段。当方差低于某一阈值时,算法根据每个修正值计算最终航向角的修正值。利用实际海洋环境采集的传感器数据,对该算法进行了验证。实验结果表明,与现有算法相比,该算法的定位性能平均提高50.48%。因此,该算法提高了运动中对齐算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
128
期刊最新文献
Proposal of MRFScore and a Regression Model for Identification of Music Relationship Indicator Mixed Reality-based Structure Placement Verification System Using AR Marker Optimal Parameter Estimation for Topological Descriptor Based Sonar Image Matching in Autonomous Underwater Robots 3D Space Object and Road Detection for Autonomous Vehicles Using Monocular Camera Images and Deep Learning Algorithms Optimization Methods for Non-linear Least Squares
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1