Gwonsoo Lee, Kihwan Choi, Phil-Yeob Lee, Ho-Sung Kim, Hansol Lee, Hyungjoo Kang, Jihong Lee
{"title":"Performance Enhancement Technique for Position-based Alignment Algorithm in AUV’s Navigation","authors":"Gwonsoo Lee, Kihwan Choi, Phil-Yeob Lee, Ho-Sung Kim, Hansol Lee, Hyungjoo Kang, Jihong Lee","doi":"10.5302/j.icros.2023.23.0081","DOIUrl":null,"url":null,"abstract":"This paper presents an improved approach for in-motion alignment based on position estimation to accurately determine the initial heading-angle of an autonomous underwater vehicle. The existing method for in-motion alignment is highly sensitive to errors from GPS reception and the localization algorithm, particularly in the vicinity of the starting point. Consequently, compensation values for the heading-angle obtained in the vicinity of the starting point are unreliable. To address this issue, this study analyzes the variance of the heading-angle compensation during the early stage of the alignment process, aiming to assess the reliability of the compensation value. By using variance as a criterion, the algorithm determines whether to continue the execution of the early stage in the alignment process. If the variance falls below a certain threshold, the algorithm calculates the correction value of the final heading-angle based on each correction value. The proposed algorithm is validated through practical experiments using sensor data collected from real-sea environments. The experimental results demonstrate an average improvement of 50.48% in localization performance with respect to the existing algorithm. Therefore, the proposed algorithm enhances the performance of the in-motion alignment algorithm.","PeriodicalId":38644,"journal":{"name":"Journal of Institute of Control, Robotics and Systems","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Institute of Control, Robotics and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5302/j.icros.2023.23.0081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an improved approach for in-motion alignment based on position estimation to accurately determine the initial heading-angle of an autonomous underwater vehicle. The existing method for in-motion alignment is highly sensitive to errors from GPS reception and the localization algorithm, particularly in the vicinity of the starting point. Consequently, compensation values for the heading-angle obtained in the vicinity of the starting point are unreliable. To address this issue, this study analyzes the variance of the heading-angle compensation during the early stage of the alignment process, aiming to assess the reliability of the compensation value. By using variance as a criterion, the algorithm determines whether to continue the execution of the early stage in the alignment process. If the variance falls below a certain threshold, the algorithm calculates the correction value of the final heading-angle based on each correction value. The proposed algorithm is validated through practical experiments using sensor data collected from real-sea environments. The experimental results demonstrate an average improvement of 50.48% in localization performance with respect to the existing algorithm. Therefore, the proposed algorithm enhances the performance of the in-motion alignment algorithm.