Dynamic Anchor Box-based Instance Decoding and Position-aware Instance Association for Online Video Instance Segmentation

Hyun-Jin Chun, Incheol Kim
{"title":"Dynamic Anchor Box-based Instance Decoding and Position-aware Instance Association for Online Video Instance Segmentation","authors":"Hyun-Jin Chun, Incheol Kim","doi":"10.5302/j.icros.2023.23.0086","DOIUrl":null,"url":null,"abstract":"Video instance segmentation (VIS) is a vision task that involves simultaneously detecting, classifying, segmenting, and tracking object instances in videos. In this study, we introduce dynamic anchor box and deformable attention for VIS (DAB-D-VIS), a novel transformer-based model for online VIS. To enhance the multilayer transformer-based instance decoding for each video frame, our proposed model uses deformable attention mechanisms that focus on a small set of key sampling points. Additionally, dynamic anchor boxes are employed to explicitly represent the region of candidate instances. These two methods have already been proven to be effective for transformer-based object detection from images. Furthermore, to address the constraints of online VIS, our model incorporates a robust inter-frame instance association method. This method leverages both similarity in the contrastive embedding space and positional difference in the images between two instances. Extensive experiments conducted on the YouTube-VIS benchmark dataset validate the effectiveness of our proposed DAB-D-VIS model.","PeriodicalId":38644,"journal":{"name":"Journal of Institute of Control, Robotics and Systems","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Institute of Control, Robotics and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5302/j.icros.2023.23.0086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Video instance segmentation (VIS) is a vision task that involves simultaneously detecting, classifying, segmenting, and tracking object instances in videos. In this study, we introduce dynamic anchor box and deformable attention for VIS (DAB-D-VIS), a novel transformer-based model for online VIS. To enhance the multilayer transformer-based instance decoding for each video frame, our proposed model uses deformable attention mechanisms that focus on a small set of key sampling points. Additionally, dynamic anchor boxes are employed to explicitly represent the region of candidate instances. These two methods have already been proven to be effective for transformer-based object detection from images. Furthermore, to address the constraints of online VIS, our model incorporates a robust inter-frame instance association method. This method leverages both similarity in the contrastive embedding space and positional difference in the images between two instances. Extensive experiments conducted on the YouTube-VIS benchmark dataset validate the effectiveness of our proposed DAB-D-VIS model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于动态锚盒实例解码和位置感知实例关联的在线视频实例分割
视频实例分割(VIS)是一种同时检测、分类、分割和跟踪视频对象实例的视觉任务。在本研究中,我们引入了动态锚盒和可视信息系统的可变形注意力(DAB-D-VIS),这是一种新的基于变压器的在线可视信息系统模型。为了增强基于多层变压器的每个视频帧的实例解码,我们提出的模型使用了聚焦于一小组关键采样点的可变形注意力机制。此外,动态锚框被用来显式地表示候选实例的区域。这两种方法已经被证明是有效的基于变换的图像目标检测。此外,为了解决在线VIS的约束,我们的模型采用了一种鲁棒的帧间实例关联方法。该方法既利用了对比嵌入空间中的相似性,又利用了两个实例之间图像的位置差异。在YouTube-VIS基准数据集上进行的大量实验验证了我们提出的DAB-D-VIS模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
128
期刊最新文献
Proposal of MRFScore and a Regression Model for Identification of Music Relationship Indicator Mixed Reality-based Structure Placement Verification System Using AR Marker Optimal Parameter Estimation for Topological Descriptor Based Sonar Image Matching in Autonomous Underwater Robots 3D Space Object and Road Detection for Autonomous Vehicles Using Monocular Camera Images and Deep Learning Algorithms Optimization Methods for Non-linear Least Squares
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1