Emerging trends in self-healable nanomaterials for triboelectric nanogenerators: A comprehensive review and roadmap

IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Frontiers in Energy Pub Date : 2023-09-30 DOI:10.1007/s11708-023-0896-2
Prabhakar Yadav, Kuldeep Sahay, Malvika Srivastava, Arpit Verma, Bal Chandra Yadav
{"title":"Emerging trends in self-healable nanomaterials for triboelectric nanogenerators: A comprehensive review and roadmap","authors":"Prabhakar Yadav,&nbsp;Kuldeep Sahay,&nbsp;Malvika Srivastava,&nbsp;Arpit Verma,&nbsp;Bal Chandra Yadav","doi":"10.1007/s11708-023-0896-2","DOIUrl":null,"url":null,"abstract":"<div><p>A thorough analysis of triboelectric nanogenerators (TENGs) that make use of self-healable nanomaterials is presented in this review. These TENGs have shown promise as independent energy sources that do not require an external power source to function. TENGs are developing into a viable choice for powering numerous applications as low-power electronics technology advances. Despite having less power than conventional energy sources, TENGs do not directly compete with these. TENGs, on the other hand, provide unique opportunities for future self-powered systems and might encourage advancements in energy and sensor technologies. Examining the many approaches used to improve nanogenerators by employing materials with shape memory and self-healable characteristics is the main goal of this review. The findings of this comprehensive review provide valuable information on the advancements and possibilities of TENGs, which opens the way for further research and advancement in this field. The discussion of life cycle evaluations of TENGs provides details on how well they perform in terms of the environment and identifies potential improvement areas. Additionally, the cost-effectiveness, social acceptability, and regulatory implications of self-healing TENGs are examined, as well as their economic and societal ramifications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"17 6","pages":"727 - 750"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-023-0896-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

A thorough analysis of triboelectric nanogenerators (TENGs) that make use of self-healable nanomaterials is presented in this review. These TENGs have shown promise as independent energy sources that do not require an external power source to function. TENGs are developing into a viable choice for powering numerous applications as low-power electronics technology advances. Despite having less power than conventional energy sources, TENGs do not directly compete with these. TENGs, on the other hand, provide unique opportunities for future self-powered systems and might encourage advancements in energy and sensor technologies. Examining the many approaches used to improve nanogenerators by employing materials with shape memory and self-healable characteristics is the main goal of this review. The findings of this comprehensive review provide valuable information on the advancements and possibilities of TENGs, which opens the way for further research and advancement in this field. The discussion of life cycle evaluations of TENGs provides details on how well they perform in terms of the environment and identifies potential improvement areas. Additionally, the cost-effectiveness, social acceptability, and regulatory implications of self-healing TENGs are examined, as well as their economic and societal ramifications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于三电纳米发电机的自修复纳米材料的新趋势:全面回顾与路线图
本综述全面分析了利用可自修复纳米材料的三电纳米发电机(TENGs)。这些 TENG 已显示出作为独立能源的前景,无需外部电源即可发挥作用。随着低功耗电子技术的发展,TENGs 正在成为众多应用的可行供电选择。尽管 TENG 的功率低于传统能源,但并不直接与传统能源竞争。另一方面,TENG 为未来的自供电系统提供了独特的机会,并可能促进能源和传感器技术的进步。本综述的主要目的是研究通过采用具有形状记忆和自修复特性的材料来改进纳米发电机的多种方法。本综述的结论为 TENGs 的进步和可能性提供了宝贵的信息,为该领域的进一步研究和进步开辟了道路。对 TENGs 生命周期评估的讨论详细说明了 TENGs 在环境方面的表现,并确定了潜在的改进领域。此外,还研究了自愈式腾博会登录的成本效益、社会可接受性和监管影响,以及其经济和社会影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Energy
Frontiers in Energy Energy-Energy Engineering and Power Technology
CiteScore
5.90
自引率
6.90%
发文量
708
期刊介绍: Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy. Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues. Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research. High-quality papers are solicited in, but are not limited to the following areas: -Fundamental energy science -Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency -Energy and the environment, including pollution control, energy efficiency and climate change -Energy economics, strategy and policy -Emerging energy issue
期刊最新文献
Climate change and innovative paths to a more sustainable future Glow-in-the-dark: Exploring the opportunities and challenges of bioluminescent plankton as a natural light source Core-membrane microstructured amine-modified mesoporous biochar templated via ZnCl2/KCl for CO2 capture Performance analysis of a novel medium temperature compressed air energy storage system based on inverter-driven compressor pressure regulation Impact of bimetallic synergies on Mo-doping NiFeOOH: Insights into enhanced OER activity and reconstructed electronic structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1